首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用电化学石英晶体微天平(EQCM)研究酸性和碱性介质中甘氨酸在Pt电极上的吸附和氧化过程.结果表明,甘氨酸的解离吸附和氧化行为与溶液的酸碱性密切相关.酸性溶液中甘氨酸吸附较弱,碱性溶液中则产生强吸附物,且当电位低于0V(vs.SCE)时可吸附于Pt电极表面.此外,碱性溶液中甘氨酸还表现出较高的电氧化活性.通过EQCM定量检测上述过程中Pt电极表面的质量变化,测定了不同电位区间(氢区、双电层区和氧区)每传递一个电子所对应的电极表面吸附物种的平均摩尔质量.  相似文献   

2.
利用电化学石英晶体微天平(EQCM)研究了含有防冻添加剂(甲醇、 乙醇)的高氯酸钠水溶液中的Na+离子在活性炭表面的吸附过程. 根据EQCM数据估算了电极/溶液界面上与Na+络合的甲醇、 乙醇分子的数量, 研究了Na+的溶剂化效应随本体溶液中防冻添加剂浓度的变化趋势, 以及对活性炭电极比容量的影响.  相似文献   

3.
通过电沉积方法在镀铂石英晶片上制备了导电聚苯胺(PANI)膜,采用电化学石英晶体微天平(EQCM)技术探讨了苯胺聚合机制及在苯酚溶液中的氧化还原特性.在0.5 mol/L硫酸溶液中结合循环伏安法考察了PANI膜在完全还原态(L)-半氧化态(E)-完全氧化态(P)之间的电活性和稳定性;在不同浓度的苯酚溶液中结合恒电压阶跃...  相似文献   

4.
利用电化学石英晶体微天平(EQCM)研究了鸟嘌呤、鸟苷和鸟苷酸在金电极上的电化学行为.结果表明,三种生物活性分子均能在1.1V电位被氧化,对应于它们所含的共同基团嘌呤环中CN键的氧化,根据氧化反应电量和质量的变化,求得电子转移数为4.氧化电流的大小次序为鸟苷酸>鸟苷>鸟嘌呤,这可能与三者在电极上的吸附量不同有关.  相似文献   

5.
采用电化学石英晶体微天平(EQCM)技术研究了Britton-Robinson(B-R,pH=1.8~11.2)缓冲溶液和H2SO4介质中电镀铂淦的金电极上As(Ⅲ)的循环伏安行为.通过实时监测EQCM频率等参数的变化过程并利用预电沉积As(O)放大电极响应信号,考察了两电极上As.(O)的电沉积、AsⅢ皿和AsⅤ助组...  相似文献   

6.
碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化   总被引:4,自引:0,他引:4  
运用原位红外反射光谱(in situ FTIRS)和电化学石英晶体微天平(EQCM)在分子水平上研究了碱性介质中甘氨酸在纳米金膜电极上的解离吸附和氧化过程.结果表明,甘氨酸在很低的电位下(-0.8 V, vs SCE)就可发生解离吸附.其解离产物氰基(CN-)与电极表面存在较强的化学吸附作用,形成AuCN-物种(红外吸收谱峰位于2100 cm-1附近).吸附在纳米金膜表面的CN-给出红外吸收显著增强、红外谱峰方向倒反和半峰宽增加的异常红外效应特征.吸附态CN-在低电位抑制H2O和OH-的吸附,当电位高于0.2 V可氧化产生OCN-;进一步升高电位到0.3 V则形成.溶液相物种OCN-和对应的红外吸收峰分别为2169 cm-1和2145 cm-1.实验结果指出,金以的形式溶解是导致电极表面质量显著减少的主要原因.  相似文献   

7.
运用电化学循环伏安法和石英晶体微天平研究了正丙醇在Pt电极和以Sb、S吸附原子修饰的Pt(Pt/Sbad和Pt/Sad)电极上的吸附和氧化过程.从电极表面质量变化角度指出正丙醇的氧化与电极表面氧物种有着极其密切的关系.Pt电极表面Sb吸附原子能在较低的电位下吸附氧,可显著提高正丙醇电催化氧化活性,与在Pt电极上相比较,正丙醇氧化的峰电位负移了0.29 V,峰电流增加了近2倍.相反,Pt电极表面S吸附原子的氧化会消耗表面氧物种,饱和吸附S原子的Pt电极上正丙醇的电氧化受到抑制.本文从表面质量变化提供了吸附原子电催化作用的新数据.  相似文献   

8.
采用电化学石英晶体微天平(EQCM)实时表征和定量检测细胞色素c(Cytc).在压电石英晶振表面上自组装巯基十一酸(MUA)单层膜,以盐酸1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧基,将Cytc共价固化到电极表面.EQCM实时监测了MUA的自组装和Cytc的固化过程,测定了二者在电极表面的覆盖度和Cytc的固化量.结果表明,Cytc在0.03~3.00μmol/L浓度范围内呈线性变化,检测限可达到1.19×10-9mol/L.  相似文献   

9.
A poly(2‐aminophenylbenzimidazole)/gold nanoparticles (P2AB/AuNPs) coated disposable pencil graphite electrode (PGE) was fabricated as an enzyme‐free sensor for the H2O2 determination. P2AB/AuNPs and P2AB were successfully synthesized electrochemically on PGE in acetonitrile for the first time. The coatings were characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, Energy‐dispersive X‐ray spectroscopy, Surface‐enhanced Raman spectroscopy, and UV‐Vis spectroscopy. AuNPs interacted with P2AB as carrier enhances the electrocatalytic activity towards reduction of H2O2. The analytical performance was evaluated in a 100 mM phosphate buffer solution at pH 6.5 by amperometry. The steady state current vs. H2O2 concentration is linear in the range of 0.06 to 100 mM (R2=0.992) with a limit of detection 3.67×10?5 M at ?0.8 V vs. SCE and no interference is caused by ascorbic acid, dopamine, uric acid, and glucose. The examination for the sensitive determination of H2O2 was conducted in commercially available hair oxidant solution. The results demonstrate that P2AB/AuNPs/PGE has potential applications as a sensing material for quantitative determination of H2O2.  相似文献   

10.
A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11 × 10−10 mol cm−2. The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM−1 cm−2, a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl, NO3, I, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.  相似文献   

11.
《Electroanalysis》2006,18(22):2168-2173
A new compact holder for either 5‐ or 10‐MHz AT‐cut quartz crystal resonator of an electrochemical quartz crystal microbalance was designed, fabricated and characterized. The holder is a hydrodynamically controlled thin‐layer radial‐flow microelectrochemical cell. Its unique feature consists of (i) a micrometer‐screw adjustable distance between the movable coaxial assembly of the Ag/Ag+ pseudoreference electrode and the inlet capillary nozzle with respect to the metal‐film working electrode of the quartz crystal resonator, and (ii) a U‐clamp mountable resonator, easily accessible for change without using any tools. The inlet solution stream is centered axially against the working electrode. The holder performance was tested under different flow conditions. These include hydrodynamic voltammetry measurements on the Fe(CN) /Fe(CN) couple, i.e., a redox system with no mass transfer across the solution–electrode interface, as well as simultaneous chronoamperometry and chronoelectrogravimetry measurements under flow injection analysis (FIA) conditions on the Ag/Ag+ couple, i.e., a system with electrodeposition of a rigid metallic film. Moreover, simultaneous changes of resonant frequency and dynamic resistance were measured under FIA conditions for a glycerol solution, i.e., an electroinactive viscous medium. For the 30<Fm<180 μL min?1 volume flow rate of solution and 50<d<250 μm nozzle‐to‐resonator distance, the holder operates in a thin‐layer radial‐flow regime at a fully developed laminar flow. For Fm=30 μL min?1 and d=100 μm, both mass and charge conversion accompanying silver electrodeposition is appreciably high and close to 35%. Simultaneous measurements of the resonant frequency change and current‐potential or current‐time transients allowed investigations of electrochemical processes involving mass changes of rigid deposits while those of the frequency change and dynamic resistance change involve changes of viscoelastic properties of medium.  相似文献   

12.
采用石英晶体微天平(EQCM)技术监测了裸金电极、镀金和碳纳米管修饰金电极上葡萄糖氧化酶(GOD)的吸附过程. 通过EQCM测量吸附固定的GOD质量, 并实时检测酶反应产物H2O2的氧化电量, 求算了各表面上吸附态GOD的比活性(ESAi). 结果表明, 各表面上均可吸附一定的GOD, 且吸附态GOD均有一定的酶活性; 修饰CNTs可增大酶吸附量和酶电极对葡萄糖的响应电流, 但ESAi随CNTs修饰量的增大而降低; Au电极上电镀金后, 酶吸附量和酶电极对葡萄糖的响应电流亦增大, 但ESAi与裸金电极上的基本一致.  相似文献   

13.
The electrochemical quartz crystal microbalance (EQCM) technique was used to investigate the electrochemistry of three benzidine derivatives, o‐tolidine (o‐TD), 3,3′,5,5′‐tetramethyl‐benzidine (TMB) and o‐dianisidine (o‐DA), in Britton‐Robinson (B‐R) buffer solutions with and without coexisting dextran sodium sulfate (DSS), respectively. During the anodic potential sweep from 0.1 to 0.7 V vs. SCE in pH 5.0 B‐R buffer solution containing o‐TD, the EQCM frequency was decreased during the first‐step oxidation of o‐TD and then increased to some extent during its second‐step oxidation, implying that a poorly soluble charge‐transfer complex (CTC) was produced here as an oxidation intermediate, and its precipitation and then dissolution at the EQCM Au electrode decreased and then increased the frequency. The depth of the V‐shaped time‐dependent frequency response (?Δf0V) to the redox switching of the CTC/o‐TD couple (0.1–0.37 V vs. SCE) was notably enhanced in the presence of DSS, being due to the formation of a mass‐enhanced CTC‐DSS adduct via electrostatic affinity. Similar phenomena were evident in the TMB system, but the CTC behavior was not observed during o‐DA oxidation in the absence of DSS, namely, the EQCM frequency kept decreasing all the time, due probably to the too high lability of the CTC from o‐DA oxidation, and the coexistence of DSS could well stabilize this CTC and turn on its CTC behavior. The o‐TD system showed the highest sensitivity to DSS and was thus examined in detail. The mechanism for the CTC‐DSS interaction is discussed from EQCM, FT‐IR and UV‐vis data. The CTC‐based EQCM determination of DSS, which is featured by a dynamically renewed surface of the detection electrode, was thus proposed, with a linear range from 0.002 to 1.6 μmol L?1 and a detection limit down to 0.7 nmol L?1 (o‐TD system).  相似文献   

14.
《Electroanalysis》2006,18(22):2210-2217
A novel method to immobilize hemoglobin (Hb) in a polymer grown from dopamine (DA) oxidation was proposed. The growth of the polymeric films during DA oxidation at the Prussian blue (PB) modified Au electrode in weak alkaline phosphate buffer (pH 9.18) and the immobilization of Hb into the polymeric films during their growth were traced by the electrochemical quartz crystal impedance analysis (EQCIA) method. A hydrogen peroxide (H2O2) biosensor was thus constructed, and effects of experimental parameters on the sensor performance, including the applied potential, solution pH and electroactive interferents, were examined. At an optimal potential of ?0.25 V vs. SCE, the current response of the biosensor in the selected phosphate buffer (pH 5.29) was linear with the concentration of H2O2 from 0.01 to 4.5 mM, with a lower limit of detection of 0.5 μM (S/N=3), short response time (within 10 s) and good anti‐interferent ability. The Michaelis constant (Kmapp) was estimated to be 3.80 mM. Compared with the separate film of PB or Hb, the composite film of Hb and PB exhibited a higher catalytic activity toward the reduction of H2O2, as a result of the additive effect of the chemical and biological catalyses.  相似文献   

15.
In the present work, the electrochemical oxidation of nitrite on carbon ceramic electrode (CCE) modified with multi‐walled carbon nanotubes (MWCNTs) was investigated. The modified electrode exhibited catalytic activity toward the electrooxidation of nitrite. Experimental parameters such as solution pH, scan rate, concentration of nitrite and nanotubes amount were studied. It was shown nitrite can be determined by differential pulse voltammetry (DPV) and hydrodynamic amperometry (HA) using the modified electrode. Under the optimized conditions the calibration plots are linear in the concentration ranges of 15‐220 and 50‐3000 μM with limit of detections of 4.74 and 35.8 μM for DPV and HA, respectively. The modified electrode was successfully applied for analysis of nitrite in spinach sample. The results were favorbly compared to those obtained by UV‐Visible spectrophotometric method. The results of the analysis suggest that the proposed method has promise for the routine determination of nitrite in the examined products.  相似文献   

16.
以电化学石英晶体微天平(EQCM)为主要测试手段,在不同浓度的高氯酸钠(NaClO4)水溶液中研究了水合离子吸附到活性炭电极孔隙过程中电极的质量变化.对于每种电解液,根据Raman光谱和EQCM数据分别计算了本体溶液中和电极/溶液界面上Na+的水合数.通过比对这两组Na+水合数,探讨了Na+存储到活性炭负极过程中的去溶剂化效应.  相似文献   

17.
The study of DNA damage induced by Fenton reaction (Fe2+/H2O2) in vitro was performed based on the direct electrochemical oxidation of 8‐hydroxydeoxyguanosine (8‐OH‐dG), the biomarker of DNA oxidative damage, at an electrochemically modified glassy carbon electrode (GCE). The effects of antioxidants, such as ascorbic acid, and hydroxyl‐radical scavenger (mannitol) on the DNA damage were also investigated. 8‐OH‐dG, the oxidation product of guanine residues in DNA, has shown significantly oxidative peak on the electrochemically modified GCE. The oxidative peak current of 8‐OH‐dG was linear with the damaged DNA concentration in the range of 10–200 mg/L. The experimental results demonstrate that ascorbic acid has ambivalent effect on DNA oxidative stress. It can promote DNA oxidative damage when ascorbic acid concentration is below 1.5 mM and protect DNA from damage in the range of 1.5–2.5 mM. As a hydroxyl‐radical scavenger, mannitol inhibits significantly DNA oxidative damage. The influence of Fe2+, as reactant, and EDTA as iron chelator in the system were also studied. The proposed electrochemical method can be used for the estimation of DNA oxidative damage from new point of view.  相似文献   

18.
《Electroanalysis》2004,16(16):1318-1323
The electrochemical behavior of NO2 at Au/Nafion, Pt/Nafion and Pt‐Au/Nafion electrodes was investigated by using electrochemical and SEM methods, respectively. It was found that the Pt‐Au/Nafion electrode showed higher electrocatalytic activity than Pt/Nafion and Au/Nafion electrodes. The net current density of Au/Nafion electrode decayed significantly during the reaction, though it showed high initial value. Pt/Nafion and Pt‐Au/Nafion electrodes, on the contrary, showed good stability. A quantitative determination of NO2 concentration was carried out at Pt‐Au/Nafion electrode and a satisfactory linear relationship was found for the NO2 concentration in the range of 0–100 ppm.  相似文献   

19.
The gold electrode was modified by noisomes, prepared by sonicating the mixed solution of PEG 6000/Tween 80/Span 80/H2O. Electrochemical cyclic voltammetry (CV) and impedance spectroscopy (EIS) were performed for characterizing the modification. The construction of multilayer films of octadecanethiol (ODT)‐niosomes had almost no pinholes, which elicited that niosomes‐coated electrode through ODT assembly was more effective immobilization compared to direct modification method. A large semicircle formation in the entire range of frequency indicated the complete electron‐transfer control for the redox reaction, implying a perfect blocking behavior. The Nyquist plot was consisting of two depressed semicircles after storage for 36 h in air, which implied a progressive and uniform construction manner, as expected for porous coatings. The modified electrode was used to investigate the interaction between 1‐anilino‐8‐naphthalene‐sulfonate (ANS) and noisomes. It was found that the low‐frequency semicircular arcs increase in diameter, indicating that the increase in the resistance Rp attributed mainly to the niosomes/solution interface. It was due to the binding of ANS to the niosomes‐modified electrode surface, exhibited against diffusing species through the pores. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A novel amperometric immunosensor based on L ‐cysteine/nanosized Prussian blue bilayer films ({NPB/L ‐cys}2) and gold nanoparticles (nano‐Au) was fabricated for determination of human chorionic gonadotrophin (HCG). First, L ‐cys and NPB was self‐assembled by layer‐by‐layer (LBL) technology to form {NPB/L ‐cys}2 bilayer films on the gold electrode. Subsequently, nano‐Au layer was immobilized on the {NPB/L ‐cys}2 bilayer films by electrodepositing gold chloride tetrahydrate and then anti‐HCG was assembly on the nano‐Au layer. Finally hemoglobin (Hb) was employed to block sites against nonspecific binding. With the electrocatalytic ability of Hb and NPB for the reduction of H2O2, the current signal of the antigen‐antibody reaction was amplified and the enhanced sensitivity was achieved. In this study, the assembly process and performance of the immunosensor were characterized by cyclic voltammetry (CV) and the morphology was researched by scanning electron microscopy (SEM). The immunosensor performed a high sensitivity and a wide linear response to HCG in two ranges from 0.5 to 10 mIU/mL and from 10 to 200 mIU/mL with a relatively low detection limit of 0.2 mIU/mL at 3 times the background noise, as well as good stability and long‐term life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号