首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new iridoid glycosides, 4″‐O‐[(E)‐p‐coumaroyl]gentiobiosylgenipin ( 1 ), 6′‐O‐[(E)‐caffeoyl]deacetylasperulosidic acid methyl ester ( 2 ), and 6′‐O‐[(E)‐sinapoyl]gardoside ( 3 ), together with seven analogues, 4 – 10 , were isolated from the BuOH extract of the fruits of Gardenia jasminoides Ellis . Their structures were determined by means of spectroscopic analyses, including HR‐ESI‐MS, IR, and 1H‐ and 13C‐NMR, and 2D experiments (COSY, HSQC, and HMBC), and comparison with known related compounds.  相似文献   

2.
From the leaves of Globularia alypum, three new phenylethyl glycosides, namely galypumosides A (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐[(E)‐p‐coumaroyl]‐β‐glucopyranoside; 1 ), B (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐[(E)‐feruloyl]‐β‐glucopyranoside; 2 ), and C (=2‐(3,4‐dihydroxyphenyl)ethyl Oα‐rhamnopyranosyl‐(1→3)‐4‐O‐[(E)‐caffeoyl]‐6‐O‐menthiafoloyl‐β‐glucopyranoside; 3 ), were isolated, together with two known phenylethyl glycosides, calceolarioside A and verbascoside. Eight iridoid glucosides, catalpol, globularicisin, globularin, globularidin, globularinin, globularimin, lytanthosalin, and alpinoside, a flavon glycoside, 6‐hydroxyluteolin 7‐O‐sophoroside, a lignan glycoside, syringaresinol 4′‐Oβ‐glucopyranoside, and a phenylpropanoid glycoside, syringin, were also obtained and characterized. The structures of the isolates were elucidated on the basis of 1D‐ and 2D‐NMR experiments as well as HR‐MALDI‐MS.  相似文献   

3.
Seven new and three known bisresorcinols, grevirobstol A (=5,5′‐((6Z,9Z)‐hexadeca‐6,9‐diene‐1,16‐diyl)bisresorcinol; 8 ), 5,5′‐[(8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 9 ), and 2‐methyl‐5,5′‐[8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 10 ) were isolated from the stems of Grevillea glauca. The new compounds were identified on the basis of spectroscopic data as (Z)‐6,7‐didehydroglaucone A ( 1 ), glaucones A and B ( 2 and 3 , resp.), 2‐(3‐hydroxyisopentyl)bisnorstriatol ( 4 ), 2‐(3‐methylbut‐2‐en‐1‐yl)bisnorstriatol ( 5 ), 2′‐methylgrebustol A ( 6 ), and glaucane ( 7 ).  相似文献   

4.
Three new thioglucosides, (4E)‐5‐{6‐O‐[(2E)‐3‐(4‐hydroxy‐3‐methoxyphenyl)prop‐2‐enoyl]‐β‐glucopyranosylsulfanyl}pent‐4‐enenitrile ( 1 ), (4E)‐5‐{6‐O‐[(2E)‐3‐(4‐hydroxy‐3,5‐dimethoxyphenyl)prop‐2‐enoyl]‐β‐glucopyranosylsulfanyl}pent‐4‐enenitrile ( 2 ) and its (4Z)‐isomer 3 , were isolated from the seeds of Raphanus sativus L. (radish), together with two known compounds. Their structures were determined by spectroscopic methods, including UV/VIS, 1D‐ and 2D‐NMR, FAB‐ and HR‐FAB‐MS experiments.  相似文献   

5.
Tumor‐promoting characteristics of seven esters, 1 – 7 , obtained from the latex of Euphorbia cauducifolia L. was appraised by carrying out NMRI mice back skin. The structures of 1 – 7 were elucidated by spectroscopic techniques like 1H‐ and 13C‐NMR, 2D‐NMR (HMQC, HMBC, HOHAHA (homonuclear Hartmann–Hahn), NOESY, and NOE), FT‐IR, UV, and MS as esters of 17‐hydroxyingenol, namely 17‐[(2Z,4E,6Z)‐deca‐2,4,6‐trienoyloxy]ingenol ( 1 ), 3‐O‐angeloyl‐17‐[(2Z,4E,6Z)‐deca‐2,4,6‐trienoyloxy]ingenol ( 2 ), 3‐O‐acetyl‐20‐O‐angeloyl‐17‐hydroxyingenol ( 3 ), 17‐(acetyloxy)‐3‐O‐angelyl‐ingenol ( 4 ), 20‐O‐acetyl‐3‐O‐angeloyl‐17‐hydroxyingenol ( 5 ), 3‐O‐angelyl‐17‐(benzoyloxy)ingenol ( 6 ) and 20‐O‐acetyl‐3‐O‐angelyl‐17‐(benzoyloxy)ingenol ( 7 ). Compounds 1 – 4 were isolated for the first time, whereas 5 – 7 are known metabolites but detected for the first time in this plant. Biological investigations revealed that these compounds are tumor promoters.  相似文献   

6.
Two new phenolic compounds, (Z)‐5′‐hydroxyjasmone 5′‐O‐{6″‐O‐[(E)‐caffeoyl]‐β‐D ‐glucopyranoside} ( 1 ) and quercetin‐7‐Oβ‐D ‐glucuronide methyl ester ( 2 ), along with ten known phenolic compounds, 3 – 12 , were isolated from the aerial parts of Artemisia iwayomogi. Their structures were elucidated by spectroscopic methods, including 1D‐ and 2D‐NMR, and HR‐ESI‐TOF‐MS techniques. The inhibitory effects of compounds 1 – 12 on the LPS‐stimulated production of IL‐12 p40, IL‐6, and TNF‐α in bone marrow‐derived dendritic cells were evaluated.  相似文献   

7.
Three new phenyl glycosides, scrophenoside A ( 1 ), B ( 2 ), and C ( 3 ), and two new phenylethyl glycosides, scroside D ( 4 ) and scroside E ( 5 ), were isolated from the stem of Picrorhiza scrophulariiflora Pennell (Scrophularlaceae), besides five known compounds. On the basis of spectroscopic evidence, the structures of the new compounds were elucidated as 4‐acetyl‐2‐methoxyphenyl 6‐O‐[4‐(β‐D ‐glucopyranosyloxy)vanilloyl]‐β‐D ‐glucopyranoside ( 1 ), 4‐acetylphenyl 6‐O‐[(E)‐p‐coumaroyl]‐β‐D ‐glucopyranoside ( 2 ), 4‐[(1R)‐ and (1S)‐1‐hydroxyethyl]‐2‐methoxyphenyl β‐D ‐glucopyranoside ( 3a and 3b , resp.), 2‐(3,4‐dihydroxyphenyl)ethyl Oβ‐D ‐glucopyranosyl‐(1→3)‐4‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranoside ( 4 ), and 2‐(3,4‐dihydroxyphenyl)ethyl Oβ‐D ‐glucopyranosyl‐(1→3)‐6‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranoside ( 5 ).  相似文献   

8.
(all‐E)‐5,6‐Diepikarpoxanthin (=(all‐E,3S,5S,6S,3′R)‐5,6‐dihydro‐β,β‐carotene‐3,5,6,3′‐tetrol; 1 ) was submitted to thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products, i.e. (9Z)‐ ( 2 ), (9′Z)‐ ( 3 ), (13Z)‐ ( 4 ), (13′Z)‐ ( 5 ), and (15Z)‐5,6‐diepikarpoxanthin ( 6 ), were determined by their UV/VIS, CD, 1H‐NMR, and mass spectra. In addition, (9Z,13′Z)‐ or (13Z,9′Z)‐ ( 7 ), (9Z,9′Z)‐ ( 8 ), and (9Z,13Z)‐ or (9′Z,13′Z)‐5,6‐diepikarpoxanthin ( 9 ) were tentatively identified as minor products of the I2‐catalyzed photoisomerization.  相似文献   

9.
The first synthesis of (Z)-neomanoalide ( 4 ) and an improved synthesis of its (E)-isomer 3 was accomplished in a concise, regiocontrolled manner by exploiting 2-[(tert-butyl)dimethylsiloxy]-4{[(tert-butyl)dimethylsiloxy]-methyl}furan ( 6 ) as the key reagent. Lithiation of 6 and subsequent reaction with the (2Z)- or (2E)-isomer of (6E)-3-{[(tert-butyl)dimethylsiloxy]methyl}-7-methyl-9-(2′,6′,6′-trimethylcyclohex-1′-enyl)nona-2,6-dienyl bromide ( 5 ), followed by hydrolysis, afforded the corresponding neomanoalide.  相似文献   

10.
Asymmetric syntheses of the following 17‐membered macrocyclic spermine alkaloids are presented: (−)‐(S)‐protoverbine (=(8S)‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 1 ), (+)‐(S)‐protomethine (=(2S)‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 2 ), (−)‐(S)‐buchnerine (=(8S)‐8‐(4‐methoxyphenyl)‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 8 ), (+)‐(S)‐verbamethine (=(+)‐(2S)‐9‐[(E)‐phenylprop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 4 ), (−)‐(S)‐verbacine (=(−)‐(8S)‐1‐[(E)‐phenylprop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 3 ), (−)‐(S)‐verbasikrine (=(−)‐(8S)‐1‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 26 ), (−)‐(S)‐isoverbasikrine (=(−)‐(8S)‐1‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 25 ), (+)‐(S)‐verbamekrine (=(+)‐(2S)‐9‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 23 ), and (+)‐(S)‐isoverbamekrine (=(+)‐(2S)‐9‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 24 ). Effective methods for 1H‐NMR determination of the enantiomeric purity in which (S)‐2‐hydroxy‐2‐phenylacetic acid and (S)‐2‐acetoxy‐2‐phenylacetic acid are used as shift reagents for 1, 8 , and related macrocyclic alkaloids are described.  相似文献   

11.
3′‐Epilutein (=(all‐E,3R,3′S,6′R)‐4′,5′‐didehydro‐5′,6′‐dihydro‐β,β‐carotene‐3,3′‐diol; 1 ), isolated from the flowers of Caltha palustris, was submitted to both thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products (9Z)‐ 1 , (9′Z)‐ 1 , (13Z)‐ 1 , (13′Z)‐ 1 , (15Z)‐ 1 , and (9Z,9′Z)‐ 1 were determined based on UV/VIS, CD, 1H‐NMR, and MS data.  相似文献   

12.
(E)‐2‐[2‐(1‐Substituted ethylidene)hydrazinyl]‐5‐oxo‐9b‐hydroxy‐5,9b‐dihydroindeno[1,2‐d][1,3]‐thiazine‐4‐carbonitriles and (E)‐5‐oxo‐[(E)‐(1‐substituted ethylidene)hydrazinyl]‐2,5‐dihydroindeno[1,2‐d][1,3]thiazine‐4‐carbonitriles have been obtained from the reaction of 2‐(substituted ethylidene)hydrazinecarbothioamides with 2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐inden‐2‐ylidene)propanedinitrile ( 1 ) in ethyl acetate solution. However, (Z)‐6′‐amino‐1,3‐dioxo‐3′‐substituted‐2′‐[(E)‐(1‐phenylethylidene)hydrazono]‐1,2′,3,3′‐tetrahydrospiro(indene‐2,4′‐[1,3]thiazine)‐5′‐carbonitriles were observed during the reaction of N‐substituted‐2‐(1‐phenylethylidene)hydrazinecarbothioamides with ( 1 ). The structure assignment of products has been confirmed on the basis of 1H‐, 13C‐NMR, and mass spectrometry, as well as theoretical calculations.  相似文献   

13.
Twenty components (including a new flavanone) were isolated and identified from the whole plant of Anaphalis sinica Hance. Their structures were determined on the basis of spectral analysis and chemical transformation. These components are 6‐[(5‐methyl‐6‐ethyl‐4‐hydroxy‐pyrone‐3‐yl)‐methylene]glabranine ( 1 ), kaempferol ( 2 ), tiliroside ( 3 ), quercetin ( 4 ), quercetin‐3‐O‐β‐D‐glucoside ( 5 ), scutellarin ( 6 ), 5,7‐dihydroxy‐8‐methoxyflavone ( 7 ), 5,7‐dihydroxy‐4′‐methoxy‐flavone‐7‐O‐α‐L‐rhamnopyranosyl(1→6)‐β‐D‐glucopyranoside ( 8 ), helipyrone ( 9 ), 4′‐hydroxydehydrokawain ( 10 ), panamin ( 11 ), ursolic acid ( 12 ), pomolic acid ( 13 ), 3‐acetyloleanolic acid ( 14 ), a mixture of N‐(2‐hydroxy‐acyl)‐4‐hydroxy‐8(E)‐ene‐sphingenine ( 15 ), O‐methyl‐D‐inositol ( 16 ), a mixture of β‐sitosterol ( 17 ) and stigmasterol ( 18 ) and a mixture of daucosterol ( 19 ) and stigmasterol‐β‐D‐glucoside ( 20 ). Among them, 6‐[(5‐methyl‐6‐ethyl‐4‐hydroxy‐pyrone‐3‐yl)‐methylene]glabranine ( 1 ) is a new compound, and 13C NMR data of panamin ( 11 ) is reported for the first time.  相似文献   

14.
Two new acylated flavonol glycosides, 3‐O‐{[2‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside and 3‐O‐{2‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside, trivially named as brauhenefloroside E (1) and F (2), respectively, were isolated from the fruits of Stocksia brauhica and their structures were elucidated using spectroscopic methods, including 2D NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

16.
Two new diarylheptanoids, katsumains A ( 1 ) and B ( 2 ), and one new kavalactone, katsumadain ( 3 ), together with the three known compounds (4E,6E)‐1,7‐diphenylhepta‐4,6‐dien‐3‐one ( 4 ), (5R,6E)‐1,7‐diphenyl‐5‐hydroxyhept‐6‐en‐3‐one ( 5 ), and cardamonin ( 6 ), were isolated from the seeds of Alpinia katsumadai Hayata . Their structures were elucidated mainly by spectroscopic methods (1D‐ and 2D‐NMR) and by mass spectrometry (HR‐ESI‐MS). Besides, the erroneous nomenclatures for (+)‐linderatin and (+)‐neolinderatin as given in [10] [11] were corrected to be 2′,4′,6′‐trihydroxy‐3′‐[(3R,4R)‐4‐isopropyl‐1‐methylcyclohex‐1‐en‐3‐yl]dihydrochalcone for (+)‐linderatin and 2′,4′,6′‐trihydroxy‐3′,5′‐bis[(3R,4R)‐4‐isopropyl‐1‐methylcyclohex‐1‐en‐3‐yl]dihydrochalcone for (+)‐neolinderatin, respectively.  相似文献   

17.
The green seaweed Caulerpa taxifolia (VAHL ) C. AGARDH (Caulerpales), which, after its recent accidental introduction, is growing in the region of Cap Martin much more vigorously than in the tropics, is shown to contain the known sesquiterpenic toxins caulerpenyne ( 1 ) – in larger amounts than in tropical Caulerpales – and oxytoxin 1 ( 2 ). Novel, potentially toxic products isolated in small amounts from this seaweed include the sesquiterpenes taxifolial A ( = (5E)-6,10-dimethyl-2-[(E)2-oxoethylidene]undeca-5,9-dien-7- yne-1,3-diyl diacetate; 3 ), taxifolial B (= (1E,6E,10E)-3-[( Z )-acetoxymethylidene]-7, 11-dimethyl-12-oxododeca-1,6,10-trien-8-yne-1,4-diyl diacetate; 4 ), 10,11-epoxycaulerpenyne ( = (1E,6E)-3-[(Z)-acetoxymethylidene]-10,11-epoxy-7, 11-dimethyldodeca-1,6-dien-8-yne-1,4-diyl diacetate; 1:1 diastereoisomer mixture; 5 ), and taxifolial C ( = (2Z,6E)-3-formyl-7,11-dimethyldodeca-2,6,10-trien-8-yne-1,1, 4-triyl triacetate; 6 ), besides, as the first example of a monoterpene from the Caulerpales, taxifolial D ( = (2Z)-3,7-dimethylocta-2, 6-dien-4-ynal; 7 ).  相似文献   

18.
The four new acylated triterpene saponins 1 – 4 , isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5 / 6 , the (Z)‐isomer libericoside C2 ( 5 ) being new, one new sucrose ester, atroximoside ( 7 ), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed‐phase silica gel. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(Z)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 5 ), and 3‐O‐[(Z)‐feruloyl]‐β‐D ‐fructofuranosyl α‐D ‐glucopyranoside ( 7 ). Compounds 1 – 6 and the known saponins 8 / 9 were evaluated against the human colon cancer cells HCT 116 and HT‐29 and showed moderate to weak cytotoxicity.  相似文献   

19.
In the three spiroacenaphthylene structures 5′′‐[(E)‐2,3‐dichlorobenzylidene]‐7′‐(2,3‐dichlorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H26Cl4N2O2S, (I), 5′′‐[(E)‐4‐fluorobenzylidene]‐7′‐(4‐fluorophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28F2N2O2S, (II), and 5′′‐[(E)‐4‐bromobenzylidene]‐7′‐(4‐bromophenyl)‐1′′‐methyldispiro[acenaphthylene‐1,5′‐pyrrolo[1,2‐c][1,3]thiazole‐6′,3′′‐piperidine]‐2,4′′‐dione, C35H28Br2N2O2S, (III), the substituted aryl groups are 2,3‐dichloro‐, 4‐fluoro‐ and 4‐bromophenyl, respectively. The six‐membered piperidine ring in all three structures adopts a half‐chair conformation, the thiazolidine ring adopts a slightly twisted envelope and the pyrrolidine ring an envelope conformation; in each case, the C atom linking the rings is the flap atom. In all three structures, weak intramolecular C—H...O interactions are present. The crystal packing is stabilized through a number of intermolecular C—H...O and C—H...X interactions, where X = Cl in (I) and F or S in (II), and C—H...O interactions are observed predominantly in (III). In all three structures, molecules are linked through centrosymmetric ring motifs, further tailored through a relay of C—H...X [Cl in (I), Br in (II) and O in (III)] interactions.  相似文献   

20.
Vinylogous β-Cleavage of Enones: UV.-irradiation of 4-(3′,7′,7′-trimethyl-2′-oxabicyclo[3.2.0]hept-3′-ene-1′-yl)but-3-ene-2-on On 1π,π*-excitation (λ = 254 nm) in acetonitrile (E/Z)- 2 is converted into the isomers 4–9 and undergoes fragmentation yielding 10 ; in methanol (E/Z)- 2 gives 7–10 and is transformed into 11 by incorporation of the solvent. On 1π,π*-excitation (λ λ?347 nm; benzene-d6) (E)- 2 is isomerized into (Z)- 2 , which is converted into the isomers 3 and 4 by further irradiation. 1π,π*-Excitation (λ = 254 nm; acetonitrile) of 4 gives 6 and (E)- 9 , whereas UV.-irradiation (λ = 254 nm; acetonitrile-d3) of 5 yields (E)- 7 and 8 . On 1π,π*-excitation (λ = 254 nm; acetonitrile) of (E/Z)- 12 the compounds (E)- 14 and (E)- 15 are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号