首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A variational multiscale method for computations of incompressible Navier–Stokes equations in time‐dependent domains is presented. The proposed scheme is a three‐scale variational multiscale method with a projection‐based scale separation that uses an additional tensor valued space for the large scales. The resolved large and small scales are computed in a coupled way with the effects of unresolved scales confined to the resolved small scales. In particular, the Smagorinsky eddy viscosity model is used to model the effects of unresolved scales. The deforming domain is handled by the arbitrary Lagrangian–Eulerian approach and by using an elastic mesh update technique with a mesh‐dependent stiffness. Further, the choice of orthogonal finite element basis function for the resolved large scale leads to a computationally efficient scheme. Simulations of flow around a static beam attached to a square base, around an oscillating beam and around a plunging aerofoil are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a numerical study of a two‐dimensional time‐dependent flow around a cylinder. Its main objective is to provide accurate reference values for the maximal drag and lift coefficient at the cylinder and for the pressure difference between the front and the back of the cylinder at the final time. In addition, the accuracy of these values obtained with different time stepping schemes and different finite element methods is studied. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We present a projection scheme whose end‐of‐step velocity is locally pointwise divergence free, using a continuous ?1 approximation for the velocity in the momentum equation, a first‐order Crouzeix–Raviart approximation at the projection step, and a ?0 approximation for the pressure in both steps. The analysis of the scheme is done only for grids that guarantee the existence of a divergence free conforming ?1 interpolant for the velocity. Optimal estimates for the velocity error in L2‐ and H1‐norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on which the continuous ?1 approximation for the velocity locks. Since the end‐of‐step velocity is locally solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the problem of shape optimization of two‐dimensional flows governed by the time‐dependent Navier–Stokes equations. We derive the structures of shape gradients for time‐dependent cost functionals by using the state derivative and its associated adjoint state. Finally, we apply a gradient‐type algorithm to our problem, and numerical examples show that our theory is useful for practical purposes and the proposed algorithm is feasible in low Reynolds number flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a novel multidimensional characteristic‐based (MCB) upwind method for the solution of incompressible Navier–Stokes equations. As opposed to the conventional characteristic‐based (CB) schemes, it is genuinely multidimensional in that the local characteristic paths, along which information is propagated, are used. For the first time, the multidimensional characteristic structure of incompressible flows modified by artificial compressibility is extracted and used to construct an inherent multidimensional upwind scheme. The new proposed MCB scheme in conjunction with the finite‐volume discretization is employed to model the convective fluxes. Using this formulation, the steady two‐dimensional incompressible flow in a lid‐driven cavity is solved for a wide range of Reynolds numbers. It was found that the new proposed scheme presents more accurate results than the conventional CB scheme in both their first‐ and second‐order counterparts in the case of cavity flow. Also, results obtained with second‐order MCB scheme in some cases are more accurate than the central scheme that in turn provides exact second‐order discretization in this grid. With this inherent upwinding technique for evaluating convective fluxes at cell interfaces, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of MCB scheme lies in its faster convergence rate with respect to the CB scheme that is found to exhibit substantial delays in convergence reported in the literature. The results obtained using new proposed scheme are in good agreement with the standard benchmark solutions in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The paper's focus is the calculation of unsteady incompressible 2D flows past airfoils. In the framework of the primitive variable Navier–Stokes equations, the initial and boundary conditions must be assigned so as to be compatible, to assure the correct prediction of the flow evolution. This requirement, typical of all incompressible flows, viscous or inviscid, is often violated when modelling the flow past immersed bodies impulsively started from rest. Its fulfillment can however be restored by means of a procedure enforcing compatibility, consisting in a pre‐processing of the initial velocity field, here described in detail. Numerical solutions for an impulsively started multiple airfoil have been obtained using a finite element incremental projection method. The spatial discretization chosen for the velocity and pressure are of different order to satisfy the inf–sup condition and obtain a smooth pressure field. Results are provided to illustrate the effect of employing or not the compatibility procedure, and are found in good agreement with those obtained with a non‐primitive variable solver. In addition, we introduce a post‐processing procedure to evaluate an alternative pressure field which is found to be more accurate than the one resulting from the projection method. This is achieved by considering an appropriate ‘unsplit’ version of the momentum equation, where the velocity solution of the projection method is substituted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
In the present paper, a numerical method for the computation of time‐harmonic flows, using the time‐linearized compressible Reynolds‐averaged Navier–Stokes equations is developed and validated. The method is based on the linearization of the discretized nonlinear equations. The convective fluxes are discretized using an O(Δx) MUSCL scheme with van Leer flux‐vector‐splitting. Unsteady perturbations of the turbulent stresses are linearized using a frozen‐turbulence‐Reynolds‐number hypothesis, to approximate eddy‐viscosity perturbations. The resulting linear system is solved using a pseudo‐time‐marching implicit ADI‐AF (alternating‐directions‐implicit approximate‐factorization) procedure with local pseudo‐time‐steps, corresponding to a matrix‐successive‐underrelaxation procedure. The stability issues associated with the pseudo‐time‐marching solution of the time‐linearized Navier–Stokes equations are discussed. Comparison of computations with measurements and with time‐nonlinear computations for 3‐D shock‐wave oscillation in a square duct, for various back‐pressure fluctuation frequencies (180, 80, 20 and 10 Hz), assesses the shock‐capturing capability of the time‐linearized scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A fourth‐order accurate solution method for the three‐dimensional Helmholtz equations is described that is based on a compact finite‐difference stencil for the Laplace operator. Similar discretization methods for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions. Here, the complicated issue of imposing Neumann boundary conditions is described in detail. The method is then applied to model Helmholtz problems to verify the accuracy of the discretization method. The implementation of the solution method is also described. The Helmholtz solver is used as the basis for a fourth‐order accurate solver for the incompressible Navier–Stokes equations. Numerical results obtained with this Navier–Stokes solver for the temporal evolution of a three‐dimensional instability in a counter‐rotating vortex pair are discussed. The time‐accurate Navier–Stokes simulations show the resolving properties of the developed discretization method and the correct prediction of the initial growth rate of the three‐dimensional instability in the vortex pair. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

17.
This paper contains a comparison of four SIMPLE‐type methods used as solver and as preconditioner for the iterative solution of the (Reynolds‐averaged) Navier–Stokes equations, discretized with a finite volume method for cell‐centered, colocated variables on unstructured grids. A matrix‐free implementation is presented, and special attention is given to the treatment of the stabilization matrix to maintain a compact stencil suitable for unstructured grids. We find SIMPLER preconditioning to be robust and efficient for academic test cases and industrial test cases. Compared with the classical SIMPLE solver, SIMPLER preconditioning reduces the number of nonlinear iterations by a factor 5–20 and the CPU time by a factor 2–5 depending on the case. The flow around a ship hull at Reynolds number 2E9, for example, on a grid with cell aspect ratio up to 1:1E6, can be computed in 3 instead of 15 h.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We prove in Theorem 1 a new relationship between the stress, pressure, velocity, and mean curvature for embedded surfaces in incompressible viscous flows. This is then used to define a corresponding modified pressure boundary condition for flow of Newtonian and generalized Newtonian fluids. These results agree with an intuitive notion of the flow physics but apparently have not previously been shown rigorously. We describe some of the implementation issues for inflow and outflow boundaries in this context and give details for a penalty treatment of the associated tangential velocity constraint. This is then implemented and applied in high‐resolution 3D benchmark calculations for a representative generalized viscosity model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A two‐dimensional quadrilateral spectral multidomain penalty method (SMPM) model has been developed for the simulation of high Reynolds number incompressible stratified flows. The implementation of higher‐order quadrilateral subdomains renders this model a nontrivial extension of a one‐dimensional subdomain SMPM model built for the simulation of the same type of flows in vertically nonperiodic domains (Diamessis et al., J. Comp. Phys, 202 :298‐322, 2005). The nontrivial aspects of this extension consist of the implementation of subdomain corners, the penalty formulation of the pressure Poisson equation (PPE), and, most importantly, the treatment of specific challenges that arise in the iterative solution of the SMPM‐discretized PPE. The two primary challenges within the framework of the iterative solution of the PPE are its regularization to ensure the consistency of the associated linear system of equations and the design of an appropriate two‐level preconditioner. A qualitative and quantitative assessment of the accuracy, efficiency, and stability of the quadrilateral SMPM solver is provided through its application to the standard benchmarks of the Taylor vortex, lid‐driven cavity, and double shear layer. The capacity of the flow solver for the study of environmental stratified flow processes is shown through the simulation of long‐distance propagation of an internal solitary wave of depression in a manner that is free of numerical dispersion and dissipation. The methods and results presented in this paper make it a point of reference for future studies oriented toward the reliable application of the quadrilateral SMPM model to more complex environmental stratified flow process studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A mass‐conserving Level‐Set method to model bubbly flows is presented. The method can handle high density‐ratio flows with complex interface topologies, such as flows with simultaneous occurrence of bubbles and droplets. Aspects taken into account are: a sharp front (density changes abruptly), arbitrarily shaped interfaces, surface tension, buoyancy and coalescence of droplets/bubbles. Attention is paid to mass‐conservation and integrity of the interface. The proposed computational method is a Level‐Set method, where a Volume‐of‐Fluid function is used to conserve mass when the interface is advected. The aim of the method is to combine the advantages of the Level‐Set and Volume‐of‐Fluid methods without the disadvantages. The flow is computed with a pressure correction method with the Marker‐and‐Cell scheme. Interface conditions are satisfied by means of the continuous surface force methodology and the jump in the density field is maintained similar to the ghost fluid method for incompressible flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号