首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(21):1945-1951
Tin(IV) porphyrins derivatives were used as ionophores for phthalate selective electrodes preparation. The influence of ionophore structure and membrane composition (amount of incorporated ionic sites) on the electrode response, selectivity and long‐term stability were studied. Poly(vinyl chloride) polymeric membranes plasticized with o‐NPOE (o‐nitrophenyloctylether) and containing Sn(IV)‐tetraphenylporphyrin (TPP) dichloride (Sn(IV)[TPP]Cl2) or Sn(IV)‐octaethylporphyrin (OEP) dichloride (Sn(IV)[OEP]Cl2), and in some cases incorporating lipophilic cationic (tetraocthylammonium bromide ‐ TOABr) and anionic (sodium tetraphenylborate – NaTPB and potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate‐KTFPB) additives, were prepared and their potentiometric characteristics compared. Both ionophores are shown to operate via a neutral mechanism, and the addition of 10 mol % of lipophilic quaternary ammonium salt derivative to the membrane is required to achieve optimal electrode performance. The potentiometric units prepared, with Sn(IV)[TPP]Cl2 (Type A) or Sn(IV)[OEP]Cl2 (Type B) without additives, presented a slope of ?52.8 mV dec?1 and ?58.8 mV dec?1 and LLLR of 9.9×10?5 mol L?1 and 9.9×10?6 mol L?1, respectively. The units prepared using the same metalloporphyrins and incorporating 10% mol TOABr presented a slope of ?55.0 mV dec?1 and ?57.8 mV dec?1 and LLLR of 5.0×10?7 mol L?1 and 3.0×10?7 mol L?1. Their analytical usefulness was assessed by potentiometric determinations of phthalate in water and industrial products providing results that presented recoveries of about 100%.  相似文献   

2.
The present work, regarding the determination of ultratrace Os(VIII), Ru(III) and Ir(III) in superficial waters is an interesting example of the possibility to simultaneously, or better sequentially determine each single element in real samples by voltammetry. The method is based on the catalytic current of the Os(VIII)‐ and Ru(III)‐bromate systems by square wave voltammetry and on the Ir(III) determination by square wave catalytic adsorptive stripping voltammetry. 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3 and 0.5 mol L?1 acetate buffer pH 4.9+7.7×10?2 mol L?1 NaBrO3+2.3×10?5 mol L?1 cetyltrimethylammonium bromide (CTAB) +0.2 mol L?1 KCl were employed as the supporting electrolytes. The analytical procedure was verified by the analysis of the standard reference materials: Sea Water BCR‐CRM 403 and Fresh Water NIST‐SRM 1643d. For all the elements, the accuracy, expressed as relative error e (%), was satisfactory, being lower than 6 %, while precision as repeatability, expressed as relative standard deviation, sr (%), was generally lower than 5 %. Once set up on the standard reference materials, the analytical procedure was transferred and applied to superficial water sampled in proximity to superhighway and in the Po river mouth area.  相似文献   

3.
A sensitive, straightforward electroanalytical method for determining pyrogallol (PY) in biodiesel in the presence of a surfactant was developed using a voltammetric technique and screen‐printed electrodes. The influence of surfactant addition (sodium dodecyl sulfate (SDS), Triton X‐100 (TX‐100), cetyltrimethylammonium bromide (CTAB), tetrabutylammonium iodide (TBAI), tetrabutylammonium bromide (TBAB), or tetraethylammonium bromide (TEAB)) on the supporting electrolyte (0.04 mol L?1 Britton? Robinson buffer) was evaluated. Only CTAB significantly increased the oxidation peak current. Under optimal conditions, the method demonstrated linearity over the concentration range of 0.8–9.0×10?6 mol L?1, with limits of detection and quantification of 4.9×10?7 and 1.5×10?6 mol L?1, respectively. The results were satisfactory, relative to those obtained using high‐performance liquid chromatography (HPLC).  相似文献   

4.
《Electroanalysis》2003,15(22):1751-1755
A sensitive, selective and economic stripping voltammetry is described for the determination of trace amounts of zirconium at a morin‐modified carbon paste electrode (morin‐MCPE). Zirconium(IV) can be preconcentrated on the surface of the morin‐MCPE due to forming the Zr(IV)–morin complex. The complex produces two second‐order derivative anodic peaks at 0.69 V (vs. SCE) and 0.75 V when linear‐scanning from 0.0 to 1.0 V. The optimum analytical conditions are: 2.2 mol L?1 HCl, 0.0 V accummulation potential, 90 s accummulation time, 250 mV s?1 scan rate. A linear relationships between the peak currents at 0.75 V and the Zr(IV) concentration are in the range of 2.0×10?8 to 3.0×10?6 mol L?1. The detection limit is 1.0×10?8 mol L?1 (S/N=3) for 120 s accumulation. The RSD for determination of 4.0×10?7 mol L?1 Zr(IV) is 4.8% (n=8). The proposed method has been applied to determine zirconium in ore samples, unnecessarily extracted.  相似文献   

5.
《Electroanalysis》2003,15(9):821-826
A sensitive and selective on‐line voltammetric procedure for determination of traces of Se(IV) is presented. The pulsed potential accumulation was proposed for minimization of interferences of surface active substances and foreign ions. The calibration plot was linear from 1×10?9 mol L?1 to 4×10?8 mol L?1 for accumulation time of 180 s. The relative standard deviation was 6.1% (n=5) for a Se(IV) concentration of 1×10?8 mol L?1. The detection limit estimated from (3 σ) for an accumulation time of 180 s was about 4×10?10 mol L?1. The validation of the procedure proposed was made by a recovery tests for tap and river water samples.  相似文献   

6.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

7.
The characteristics, performance and application of ion‐selective electrodes for bromate ion based on rhodamine B and tetrahexyl ammonium bromide as electrode‐active substances are described for the first time. These electrodes respond with sensitivities of (58.0±1.0) and (61.0±2.0) mV decade?1 over the range 1.0×10?8–1.0×10?2 mol l?1 at pH 4–9 and 4–8 and a detection limit of 6.0×10?8 and 4.0×10?8 mol l?1 for rhodamine B and tetrahexyl ammonium bromide sensors, respectively. The electrodes are easily constructed at a relatively low cost, have a fast response time and can be used for a period of 3 months without any considerable divergence in potential. The proposed sensors displayed good selectivity for bromate ion in the presence of several substances and inorganic anions. Sensors were used for the direct assay of bromate ion in drinking water samples.  相似文献   

8.
This paper reports a simple and highly selective method for the separation, preconcentration, and determination of trace amounts of thorium and uranium in some complex samples via staircase flotation. The method is based on the initial flotation of the Th(IV)‐arsenazo III complex in the presence of U(VI) from a solution of 5 mol dm?3 HCl, then reduction of U(VI) to U(IV) and repetition of the flotation step. In both steps, the floated complex was dissolved in a 5‐mL portion of methanol and its absorbance was measured at 655 nm, spectrophotometrically. For a 30‐mL portion of the sample, Beer's law was obeyed over the concentration ranges of 3.40 × 10?7to 3.06 × 10?6 mol dm?3 for Th(IV) and3.40 × 10?7 to 3.40 × 10?6 mol dm?3 for U(IV) with the apparent molar absorptivity of 4.20 × 105 dm3 mol?1 cm?1 and 3.59 × 105 dm3 mol?1 cm?1, respectively. The RSDs (n = 7) corresponding to 1.7 × 10?6 mol dm?3 of Th(IV) and U(IV) were obtained as 1.7% and 1.87%. The detection limits (7 blanks) for both the metal ions were found to be 1.7 × 10?7 mol dm?3. The important benefit of the method is that the determinations are free from the interference of almost all cations and anions found in the complex matrixes, such as seawater samples. The proposed method was also applied to reference materials, and the determinations were shown to have good agreement with the certified values.  相似文献   

9.
Peak area as instrumental datum for determining the concentration of metals in solution instead of peak height is proposed for the simultaneous voltammetric determination in particulate matter of ultratrace Os(VIII), Ru(III) and Pb(II), species linked to vehicle emissions. In the case of species present at ultratrace concentration level or having low reversibility degree of the electrodic processes, the employment of peak area, instead of peak current, permits to achieve limits of detection lower even more of one order of magnitude. The method is based on the catalytic current of the Os(VIII)‐, Ru(III)‐ and Pb(II)‐bromate system by differential pulse voltammetry. 0.3 mol L?1 acetate buffer pH 4.5+6.9×10?2 mol L?1 NaBrO3+2.3×10?4 mol L?1 EDTA‐Na2 was employed as the supporting electrolyte. For all the elements, the accuracy, expressed as relative error e%, and the precision, expressed as relative standard deviation sr%, were satisfactory being lower than 6 %. To better validate the analytical procedure, a comparison with spectroscopic (electrothermal atomic absorption spectroscopy, ET‐AAS) is also reported.  相似文献   

10.
This paper describes the development of a new sensor based on an ionic organic film. The amphiphilic molecule, 4‐[(4‐decyloxyphenyl)‐ethynyl]‐1‐methylpyridinium iodide (10PyI), which has liquid‐crystalline properties, was synthesized and applied in the construction of a GCE/10PyI sensor. Analytical parameters for caffeic acid, repeatability (4.8 %), reproducibility (2.8 %), linearity (two ranges: 9.9×10?7 to 3.8×10?5 mol L?1 and 4.7×10?5 to 9.9×10?5 mol L?1) and detection limits (9.0×10?7 mol L?1 and 8.7×10?6 mol L?1), were determined. The method was successfully applied in the determination of total phenolic compounds (TPC) in mate herb extracts.  相似文献   

11.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

12.
Using 3‐Aminopropyltriethoxysilane(APTES) as a single silica source, an amino‐rich ultrafine organosilica‐nanoparticle‐modified Au electrode was fabricated, following the formation of (3‐mercaptopropyl)‐trimethoxysilane (MPTS) monolayer on Au surface (MPTS/Au). With cetyltrimethylammonium bromide as an additive, APTES‐based gel particles on the electrode have a narrow particle size distribution of 4–7 nm and “crystal‐like” structure. AFM and electrochemical characterization confirmed the successful grafting of APTES nanoparticles on MPTS/Au. The APTES/MPTS/Au electrode is highly sensitive for the detection of copper(II) ions with a detection limit as low as 1.6×10?12 mol L?1 (S/N>3) by square wave voltammetry. The current is linear to copper(II) concentration between 1.6×10?12 and 6.25×10?10 mol L?1.  相似文献   

13.
The objective of this research work was to develop a simple, highly sensitive and precise method for spectrophotometric determination of osmium(IV). O-Methylphenyl thiourea (OMPT) coordinates with osmium(IV) as a 1:1 (osmium(IV)–OMPT) complex in hydrochloric acid media (0.8 mol l?1). The novelty of the investigated method is instant complex formation at room temperature with no need of heating or standing. The complex is stable for more than 8 days. The method is applicable over a wide linearity range (up to 110 µg ml?1). A low reagent concentration is required (2 ml, 0.009 mol l?1 in ethanol). The complex exhibits maximum absorption in the range of wavelength 510–522 nm and 514 nm was selected for further study. The molar absorptivity was 1.864 × 103 l mol?1 cm?1, Sandell’s sensitivity was 0.102 µg of osmium(IV) cm?2. Proposed method was successfully applied for separation and determination of osmium(IV) from binary and ternary synthetic mixtures containing associated metal ions. A scheme for mutual separation of osmium(IV), rhodium(III) and platinum(IV) is developed.  相似文献   

14.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

15.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

16.
A voltammetric method was developed for zirconium determination as Zr(IV)‐cupferron‐oxalate‐diphenylguanidine complex based on adsorptive accumulation at the HMDE (Epeak=?0.95 V). The supporting electrolyte was a mixture of acetate/acetic acid (pH 4.6) and ammonium acetate (pH 5.7) solutions. Eads=?0.6 V (vs. Ag/AgCl), tads=400 s, 10 mV s?1 scan rate, and DP mode were the main parameters. The linear range was 0.033 to 3.3×10?9 mol L?1, and the LOD and LOQ (tads=400 s) were 0.77 and 1.6×10?11 mol L?1, respectively. The method was adequate for seawater samples, although not sufficiently sensitive for surface waters.  相似文献   

17.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

18.
An amphiphilic electrolyte, methacryloxyethyl dimethyloctane ammonium bromide (MODAB), was synthesized by quaternization of dimethylaminoethyl methacrylate (DMAEMA) with 1‐bromooctane. Then amphiphilic PMODAB gel was synthesized by radiation cross‐linking with ethyleneglycol dimethacrylate as cross‐linker. PMODAB gels possess distinguished different swelling behaviors with those of DMAEMA hydrogels: (1) Antipolyelectrolyte phenomenon was observed in NaCl solution, that is, a remarkable increment of equilibrium degree of swelling (EDS) in the low NaCl concentration region (10?4 to 10?3 mol L?1), followed by a significant decrease (10?3 to 0.2 mol L?1), and a collapsed state (>0.2 mol L?1); (2) Compared with PDMAEMA, PMODAB was a temperature‐sensitive polymer which showed an upper critical solution temperature (UCST) behavior. The EDS of PMODAB gel dramatically increased at the UCST; (3) In the 0.2 mol L?1 NaCl solutions, PMODAB gel swelled more significantly in a basic condition (pH > 10) than that in an acidic condition. The special volume phase transition behavior of PMODAB gel is ascribed to the hydrophobic interaction between octyl groups and the formation of ion‐cluster between tetra‐alkyl ammonium cation and Br?, which lead to the aggregation of gel structure and could be affected by the composition and temperature of the surrounding solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 473–480, 2008  相似文献   

19.
A cathodically pretreated boron‐doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry. Linear calibration curves (r=0.999) were obtained from 1.9×10?5 to 2.1×10?4 mol L?1 for AA and from 9.7×10?6 to 1.1×10?4 mol L?1 for CAF, with detection limits of 19 μmol L?1 and 7.0 μmol L?1, respectively. This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations, with results equal to those obtained using a HPLC reference method.  相似文献   

20.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号