首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

2.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

3.
《Electroanalysis》2004,16(20):1734-1738
A novel biosensor by electrochemical codeposited Pt‐Fe(III) nanocomposites and DNA film was constructed and applied to the detection of uric acid (UA) in the presence of high concentration of ascorbic acid (AA). Based on its strong catalytic activity toward the oxidation of UA and AA, the modified electrode resolved the overlapping voltammetric response of UA and AA into two well‐defined peaks with a large anodic peak difference (ΔEpa) of about 380mV. The catalytic peak current obtained from differential pulse voltammetry (DPV) was linearly dependent on the UA concentration from 3.8×10?6 to 1.6×10?4 M (r=0.9967) with coexistence of 5.0×10?4 M AA. The detection limit was 1.8×10?6 M (S/N=3) and the presence of 20 times higher concentration of AA did not interfere with the determination. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

4.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

5.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

6.
Platinum nanoparticles (Ptnano) decorated multiwalled carbon nanotubes (MWCNTs)–1‐octyl‐3‐methylimidazolium hexafluorophosphate ([omim][PF6]) composite material (MWCNTs‐Ptnano‐[omim][PF6]) was fabricated and characterized for the first time. In the presence of [omim][PF6], more Ptnano could deposit on MWCNTs. The average diameter of the deposited Ptnano was about 5 nm. The composite material film coated glassy carbon electrode (GCE) exhibited sensitive voltammetric response to theophylline (TP). Under the optimized conditions (i.e., preconcentration for 2 minutes on open circuit in 0.10 M pH 3.0 phosphate buffer), the anodic peak current of TP at about 1.1 V (vs. SCE) was linear to TP concentration over the range of 1.0×10?8–1.0×10?5 M. The detection limit was estimated to be 8.0×10?9 M. The modified electrode was successfully applied to the determination of TP in medicine tablet and green tea. In addition, the voltammetric responses of hypoxanthine (HX), xanthine (Xan) and uric acid (UA) on the MWCNTs‐Ptnano‐[omim][PF6]/GCE were also discussed.  相似文献   

7.
《Electroanalysis》2006,18(5):440-448
We report the combination of the charge repelling property of tetraphenyl‐borate (TPB) anion and the electrooxidation catalytic effect of cobalt(II) tetrakisphenylporphyrin (CoTPP) embedded in a sol gel ceramic film to develop a modified glassy carbon electrode (CoTPP‐TPB‐SGGCE) for the simultaneous determination of dopamine (DA) and uric acid (UA). The optimized CoTPP‐TPB‐SGGCE shows excellent sensitivity and selectivity for the DA and UA analysis. As high as 2000 fold acceptable tolerance of ascorbic acid (AA) for the determination of trace DA and UA is reached. In the presence of 0.10 mM AA, the linear concentration range for DA is from 6.0×10?8 to 2.5×10?5 M, and the detection limit is 2.0×10?8 M. For UA, the linear concentration range is from 1.0×10?7 to 3.5×10?5 M, and the detection limit is 7.0×10?8 M. Our study has also demonstrated that the novel CoTPP‐TPB‐SGGCE shows high stability and reliability. For 6.00 μM DA and UA, a total of 12 measurements were taken in one week, and the relative standard deviation is 2.05% and 2.68% respectively. No obvious shift of peak current and peak potential is observed over a three‐month lifetime test. The response of the sensor is very quick and response time is approximately 1 s. Satisfactory results are also achieved when the CoTPP‐TPB‐SGGCEs being used to detect the DA and UA in human urine samples.  相似文献   

8.
The voltammetric behavior of uric acid (UA) was studied at a carbon-ceramic electrode modified with multi walled carbon nanotubes; which was developed via a simple procedure. UA can be effectively oxidized at the surface of the electrode and produced an anodic peak at about 0.29 V in pH 6.8 phosphate buffer solutions. The experimental parameters such as pH, accumulation time, and amount of multi walled carbon nanotubes were optimized for determination of UA. Under the optimum conditions, the anodic peak current in differential pulse voltammetry is linear to the UA concentration over the range from 2.5×10?7M to 1.0×10?4 M with a correlation coefficient of 0.998. The electrode exhibited good stability and could be easily regenerated. The relative standard deviation of the peak current obtained for a 5.0?×?10?5 M UA solution was 1.0%. The influence of dopamine and ascorbic acid on the anodic peak current of UA was examined. This method was successfully applied for the determination of uric acid in human urine sample, and the recovery was 99.9%.  相似文献   

9.
《Analytical letters》2012,45(16):2618-2630
A carbon paste electrode (CPE), modified with novel hydroquinone/TiO2 nanoparticles, was designed and used for simultaneous determination of ascorbic acid (AA), uric acid (UA) and folic acid (FA). The magnitude of the peak current for modified TiO2-nanoparticle CPE (MTNCPE) increased sharply in the presence of ascorbic acid and was proportional to its concentration. A dynamic range of 1.0–1400.0 μM, with the detection limit of 6.4 × 10?7 M for AA, was obtained using the DPV technique (pH = 7.0). The prepared electrode was successfully applied for the determination of AA, UA, and FA in real samples.  相似文献   

10.
《Electroanalysis》2005,17(7):630-634
Myoglobin (Myb) of horse heart is incorporated on multi‐walled carbon nanotubes (MWNTs) and immobilized at a glassy carbon (GC) electrode surface. Its electrochemical behavior and enzyme activity are characterized by employing electrochemical methods. The results indicate that MWNTs can obviously promote the direct electron transfer between Myb and electrode, and that the Myb on MWNTs behaves as an enzyme‐like activity towards the electrochemical reduction of nitric oxide (NO). Accordingly, an unmediated NO biosensor is constructed. Experimental results reveal that the peak current related to NO is linearly proportional to its concentration in the range of 2.0×10?7–4.0×10?5 mol/L. The detection limit is estimated to be 8.0×10?8 mol/L. Considering a relative standard deviation of 2.1% in seven independent determinations of 1.0×10?5 mol/L NO, this biosensor shows a good reproducibility. The biosensor based on Myb/MWNTs modified electrode can be used for the rapid determination of trace NO in aqueous solution with a good stability, nice selectivity and easy construction.  相似文献   

11.
A composition of multiwalled carbon nanotube (MWCNT), Nafion and cobalt(II)‐5‐nitrosalophen (CoNSal) is applied for the modification of carbon‐paste electrode (CPE). The pretreated MWCNT is well dispersed in the alcoholic solution of Nafion under the ultrasonic agitation, and the resulted suspension is used as modifier (with 10% w/w) in the matrix of the paste electrode. The prepared electrode further modified by addition of 3 wt% of CoNSal. The resulted modified electrode is used as a sensitive voltammetric sensor for simultaneous determination of uric acid (UA) and ascorbic acid (AA). The electrode showed efficient electrocatalytic activity in lowering the anodic overpotentials and enhancement of the anodic currents. This electrode is able to completely resolve the voltammetric response of UA and AA. The effects of potential sweep rate and pH of the buffer solution on the response of the electrode, toward UA and AA, and the peak resolution is thoroughly investigated by cyclic and differential pulse voltammetry (CV and DPV). The best peak resolution for these compounds using the modified electrode is obtained in solutions with pH 4. The ΔEp for UA and AA in these methods is about 315 mV, which is considerably better than previous reports for these compounds. A linear dynamic range of 1×10?7 to 1×10?4 M with a detection limit of 6×10?8 M is resulted for UA in buffered solutions with pH 4.0. The voltammetric response characteristics for AA are obtained as, the linear range of 5×10?7 to 1×10?4 M with the detection limit of 1×10?7 M. The voltammetric detection system was very stable and the reproducibility of the electrode response, based on the six measurements during one month, was less than 3.5% for the slope of the calibration curves of UA and AA. The prepared modified electrode is successfully applied for the determination of AA and UA in mixture samples and reasonable accuracies are resulted.  相似文献   

12.
Electrochemical behavior of dopamine at the RuO2‐modified vertically aligned carbon nanotubes electrode was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The RuO2‐modified carbon nanotube electrode showed higher electrocatalytic activity towards the oxidation of dopamine than the MWNTs electrode in 0.10 M phosphate buffer solution. At an applied potential of +0.4 V, the RuO2/MWNTs electrode exhibited a wide detection range up to 3.6×10?3 M with detection limit of 6.0×10?8 M (signal/noise=3) for dopamine determination. Meanwhile, the optimized sensor for dopamine displayed a sensitivity of 83.8 μA mM?1 and response time of 5 s with addition of 0.20 mM dopamine. In addition, DPV experiment revealed that interfering species such as ascorbic acid and uric acid could be effectively avoided. The RuO2/MWNTs electrode presents stable, highly sensitive, favorable selectivity and fast amperometric response of dopamine.  相似文献   

13.
《Electroanalysis》2005,17(10):832-838
A simply and high selectively electrochemical method for simultaneous determination of hydroquinone and catechol has been developed at a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increase at MWNT modified electrode in 0.20 M acetate buffer solution (pH 4.5). The oxidation peaks of hydroquinone and catechol merge into a large peak of 302 mV (vs. Ag/AgCl, 3 M NaCl) at bare glassy carbon electrode. The two corresponding well‐defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occur at 264 mV and 162 mV, respectively. Under the optimized condition, the oxidation peak current of hydroquinone is linear over a range from 1.0×10?6 M to 1.0×10?4 M hydroquinone in the presence of 1.0×10?4 M catechol with the detection limit of 7.5×10?7 M and the oxidation peak current of catechol is linear over a range from 6.0×10?7 M to 1.0×10?4 M catechol in the presence of 1.0×10?4 M hydroquinone with the detection limit of 2.0×10?7 M. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.  相似文献   

14.
A carbon‐coated iron nanoparticles (CIN, a new style fullerence related nanomaterial) modified glassy carbon electrode (CIN/GCE) has been developed for the determination of uric acid (UA). Electrochemical behaviors of UA on CIN/GCE were explored by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the voltammetric response of UA on CIN/GC was enhanced dramatically because of the strong accumulation effect of CIN and the large working area of the CIN/GC electrode. The parameters including the pH of supporting electrolyte, accumulation potential and time, that govern the analytical performance of UA have been studied and optimized. The DPV signal of UA on CIN/GCE increased linearly with its concentration in the range from 5.0×10?7 to 2.0×10?5 M, with a detection limit of 1.5×10?7 M (S/N=3). The CIN/GCE was used for the determination of UA in samples with satisfactory results. The proposed CIN/GCE electrochemical sensing platform holds great promise for simple, rapid, and accurate detection of UA.  相似文献   

15.
《Electroanalysis》2005,17(9):749-754
A sensitive electrochemical method for the determination of simvastatin (SV) was established, based on the enhanced oxidation of SV at a multi‐walled carbon nanotubes‐dihexadecyl hydrogen phosphate composite modified glassy carbon electrode (MWNTs‐DHP/GCE). The voltammetric studies showed that MWNTs instead of DHP or GCE could effectively catalyze the oxidation of SV. The dependence of oxidation current on SV concentration was explored under optimal conditions, which exhibited a good linear relationship in the range of 1.0×10?7–7.5×10?6 M. The detection limit of SV was also examined and a low value of 5.0×10?8 M was obtained for 5 min accumulation (σ=3). This electrode was applied to the detection of SV in drug forms and the results were in accordance with those obtained by UV spectroscopy.  相似文献   

16.
L ‐Tyrosine can exhibit a small anodic peak on multiwalled carbon nanotubes (MWCNTs) coated glassy carbon electrodes (GCE). At pH 5.5 its peak potential is 0.70 V (vs. SCE). When an ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, [omim][PF6]) is introduced on the MWCNT coat, the peak becomes bigger. Furthermore, in the presence of Cu2+ ion the anodic peak of L ‐tyrosine increases further due to the formation of Cu2+‐L ‐tyrosine complex, while the peak potential keeps unchanged. Therefore, a sensitive voltammetry based on the oxidation of Cu2+‐L ‐tyrosine complex on MWCNTs‐[omim][PF6] composite coated electrode is developed for L ‐tyrosine. Under the optimized conditions, the anodic peak current is linear to L ‐tyrosine concentration in the range of 1×10?8–5×10?6 M, and the detection limit is 8×10?9 M. The modified electrode shows good reproducibility and stability. In addition, the voltammetric behavior of other amino acids is explored. It is found that among them tryptophan (Trp) and histidine (His) can also produce sensitive anodic peak under same experimental conditions, and their detection limits are 4×10?9 M and 4×10?6 M, respectively.  相似文献   

17.
A convenient, low cost, and sensitive electrochemical method, based on a disposable graphene nanosheets (GR) and NiO nanoparticles modified carbon screen printed electrode (NiO/GR/SPE), is described for the simultaneous determination of dopamine (DA) and uric acid (UA). The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and UA. A peak potential difference of 150 mV between DA and UA was large enough to determine DA and UA individually and simultaneously. The anodic peak currents of DA were found to be linear in the concentration range of 1.0–500.0 μM with the detection limit of 3.14×10?7 M.  相似文献   

18.
Dopamine (DA) is a significant neurotransmitter in the central nervous system, coexisting with uric acid (UA) and ascorbic acid (AA). UA and AA are easily oxidizable compounds having potentials close to that of DA for electrochemical analysis, resulting in overlapping voltammetric response. In this work, a novel molecularly imprinted (MI) electrochemical sensor was proposed for selective determination of DA (in the presence of up to 80‐fold excess of UA and AA), relying on gold nanoparticles (Aunano)‐decorated glassy carbon (GC) electrode coated with poly(carbazole (Cz)‐co‐aniline (ANI)) copolymer film incorporating DA as template (DA imprinted‐GC/P(Cz‐co‐ANI)‐Aunano electrode, DA‐MIP‐Aunano electrode). The DA recognizing sensor electrode showed great electroactivity for analyte oxidation in 0.2 mol L?1 pH 7 phosphate buffer. Square wave voltammetry (SWV) was performed within 10?4–10?5 mol L?1 of DA, of which the oxidation peak potential was observed at 0.16 V. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0×10?6 and 6.7×10?6 mol L?1, respectively. Binary and ternary synthetic mixtures of DA‐UA, DA‐AA and DA‐UA‐AA yielded excellent recoveries for DA. Additionally, DA was quantitatively recovered from a real sample of bovine serum spiked with DA, and determined in concentrated dopamine injection solution. The developed SWV method was statistically validated against a literature potentiodynamic method using a caffeic acid modified‐GC electrode.  相似文献   

19.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

20.
尉艳  李茂国方宾 《中国化学》2007,25(11):1622-1626
The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号