首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

2.
Banks CE  Compton RG 《The Analyst》2005,130(9):1232-1239
The electrocatalytic properties of multi-walled carbon nanotube modified electrodes toward the oxidation of NADH are critically evaluated. Carbon nanotube modified electrodes are examined and compared with boron-doped diamond and glassy carbon electrodes, and most importantly, edge plane and basal pyrolytic graphite electrodes. It is found that CNT modified electrodes are no more reactive than edge plane pyrolytic graphite electrodes with the comparison with edge plane and basal plane pyrolytic graphite electrodes allowing the electroactive sites for the electrochemical oxidation of NADH to be unambiguously determined as due to edge plane sites. Using these highly reactive edge plane sites, edge plane pyrolytic graphite electrodes are examined with cyclic voltammetry and amperometry for the electroanalytical determination of NADH. It is demonstrated that a detection limit of 5 microM is possible with cyclic voltammetry or 0.3 microM using amperometry suggesting that edge plane pyrolytic graphite electrodes can conveniently replace carbon nanotube modified glassy carbon electrodes for biosensing applications with the relative advantages of reactivity, cost and simplicity of preparation. We advocate the routine use of edge plane and basal plane pyrolytic graphite electrodes in studies utilising carbon nanotubes particularly if 'electrocatalytic' properties are claimed for the latter.  相似文献   

3.
《Electroanalysis》2005,17(8):655-661
The first examples of using edge plane pyrolytic graphite electrodes for anodic and cathodic stripping voltammetry (ASV and CSV) are presented, notably the ASV of silver and the CSV of manganese. In the former example, detection limits for silver (based on 3σ) of 8.1 nM and 0.185 nM for 120 s and 300 s accumulation time, respectively, were achievable using the edge plane electrode, which were superior to those observed on glassy carbon, basal plane pyrolytic graphite and boron‐doped diamond electrodes. In the second example, a detection limit for manganese of 0.3 μM was possible which was comparable with that achievable with a boron‐doped diamond electrode but with an increased sensitivity. Comparison of the edge plane pyrolytic graphite electrode with boron‐doped diamond electrodes reveals that the edge plane electrode has comparable detection limits and sensitivities whilst exhibiting a lower signal‐to‐noise ratio and large potential window for use in trace analysis suggesting boron‐doped diamond can be conveniently replaced by edge plane pyrolytic graphite as an electrode material in many applications.  相似文献   

4.
《Electroanalysis》2017,29(3):756-764
Direct electro‐oxidation of famotidine at different graphitic carbon‐based electrode materials was evaluated. These materials included conventional electrodes of edge‐plane pyrolytic graphite, basal‐plane pyrolytic graphite, carbon paste, and glassy carbon as well as nano‐structured carbon‐based materials such as pyrolytic carbon film, carbon nanotube, and nano‐graphene. Raman spectroscopy and scanning electron microscopy were employed to analyze their structural and morphological features. It was found that the pyrolytic carbon film electrode, after a simple and fast anodic activation, shows superior electroanalytical performance. The method was successfully applied for the electroanalytical determination of famotidine in tablet dosage forms and urine samples.  相似文献   

5.
Pyrolytic carbon films (PCFs) were prepared by chemical vapor deposition (CVD) at different deposition temperatures. As an example of using PCF electrode in electroanalysis, the direct electrooxidation of ascorbic acid (AA) at the PCF electrode was investigated and compared with common carbon‐based electrodes such as glassy carbon (GC), edge plane pyrolytic graphite (EPPG), and basal plane pyrolytic graphite (BPPG) electrodes. It was found that the PCF electrodes prepared under deposition temperatures higher than 1050 °C showed a higher sensitivity and lower overpotential compared to the other carbon electrodes. The electrode was successfully applied for determination of AA in real samples.  相似文献   

6.
The voltammetric response of nitrogen dioxide in aqueous sulfuric acid using an edge plane pyrolytic graphite electrode has been explored and contrasted with that from basal plane pyrolytic graphite, glassy carbon or boron-doped diamond electrodes. Edge plane graphite electrode is found to produce an excellent voltammetric signal in comparison with other carbon-based electrodes exhibiting a well-defined analytically useful voltammetric redox couple in 2.5 M sulfuric acid which is absent on the alternative electrodes.  相似文献   

7.
《Electroanalysis》2005,17(17):1529-1533
The direct electrochemical oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode (EPPG) is investigated and compared with other common carbon‐based electrodes, specifically glassy carbon, boron doped diamond and basal plane pyrolytic graphite. It is found that the EPPG electrode shows a significantly higher degree of electrochemical reversibility than the other electrode substrates giving rise to an analytically optimized limit of detection and sensitivity of 7.1×10?5 M and 0.065 A M?1 respectively.  相似文献   

8.
《Electroanalysis》2005,17(12):1025-1034
A series of modified electrodes were prepared both via solvent evaporation and electrochemical cycling of azobenzene and derivatives and various quinones and assessed for their suitability as oxygen reduction electrocatalysts and sonoelectrocatalysts. Glassy carbon electrodes were modified via solvent evaporation with 1,2‐dihydroxyanthraquinone and 1,2‐diazonium‐9,10‐anthraquinone while edge plane and basal plane pyrolytic graphite electrodes were modified by the same procedure with 9,10‐phenanthraquinone. The stability of the attached moiety was accessed in each case under ultrasound. For comparison the same electrode substrates were modified with 9,10‐phenanthraquinone by electrochemical cycling and also exposed to ultrasound. The observed results suggest the use of the glassy carbon electrodes modified with azobenzene and derivatives via solvent evaporation as the optimal carbon based sonoelectrocatalysts for oxygen reduction in term of stability under insonation and high catalytic rate.  相似文献   

9.
The effect of surface modifications on the electrochemical behavior of the anticancer drug idarubicin was studied at multiwalled carbon nanotubes modified glassy carbon and edge plane pyrolytic graphite electrodes. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The modified electrodes were constructed for the determination of idarubicin using adsorptive stripping differential pulse voltammetry. The experimental parameters such as supporting electrolyte, pH, accumulation time and potential, amount of carbon nanotubes for the sensitive assay of idarubicin were studied as details. Under the optimized conditions, idarubicin gave a linear response in the range 9.36×10?8–1.87×10?6 M for modified glassy carbon and 9.36×10?8–9.36×10?7 M for modified edge plane pyrolytic graphite electrodes. The detection limits were found as 1.87×10?8 M and 3.75×10?8 M based on modified glassy carbon and edge plane pyrolytic graphite electrodes, respectively. Interfering species such as ascorbic acid, dopamine, and aspirin showed no interference with the selective determination of idarubicin. The analyzing method was fully validated and successfully applied for the determination of idarubicin in its pharmaceutical dosage form. The possible oxidation mechanism of idarubicin was also discussed. The results revealed that the modified electrodes showed an obvious electrocatalytic activity toward the oxidation of idarubicin by a remarkable enhancement in the current response compared with bare electrodes.  相似文献   

10.
We report the comparison of electron transfer kinetic parameters of the ferrocene redox couple in both acetonitrile and in room temperature ionic liquid (RTIL) 1‐butyl‐3‐methylimidiazonium hexafluorophosphate ([C4mim] [PF6]), using edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG) and glassy carbon (GC) electrodes. Each electrode surface was characterized using SEM and AFM and the surface morphology was analyzed in terms of surface heterogeneity including the distribution of edge plane defects. The experimental data were modeled using both one and two dimensional simulations to correlate the electron transfer parameters obtained with the different surface structure of each electrode. Furthermore, we show that the diffusion domain approximation (commonly used to accurately simulate electron transfer kinetics at graphitic surfaces) breaks down when a BPPG electrode is used in RTIL and demonstrate the near impossibility of assigning rate constant to the basal plane surface.  相似文献   

11.
Moore RR  Banks CE  Compton RG 《The Analyst》2004,129(8):755-758
The first example of using an edge plane pyrolytic graphite electrode in electroanalysis is reported as the determination of homocysteine, N-acetylcysteine, cysteine and glutathione is studied. The response of the electrode in the direct oxidation of thiol moieties is explored and found to be electrocatalytic producing a reduction in the overpotential while having enhanced signal-to-noise characteristics compared to glassy carbon and basal plane pyrolytic graphite electrodes. The effectiveness of the methodology is examined in the determination of cysteine species in a growth tissue media that contains a high number of common biological interferences. The advantageous properties of this electrode for thiol determination lie in its excellent catalytic activity, sensitivity and simplicity.  相似文献   

12.
1-(N-Boc-aminomethyl)-4-(aminomethyl)benzene, bearing a protected amine group, was electrochemically grafted to glassy carbon and edge plane and basal plane highly oriented pyrolytic graphite electrodes by the oxidation of the corresponding linker. Following the removal of tert-butyloxycarbonyl protecting group, anthraquinone-2-carboxylic acid was coupled to the amine-terminated linker using solid-phase synthesis. The surface coverage of the immobilized anthraquinone redox centers was investigated by cyclic voltammetry and found to be the highest at edge plane and the lowest at the basal plane electrodes. The electrocatalytic activity of the anthraquinone-modified electrodes toward oxygen reduction was explored by cyclic voltammetry, chronoamperometry, and chronocoulometry at the unmodified and modified graphite electrodes. The immobilized anthraquinone was shown to catalyze the reduction of oxygen to hydrogen peroxide and the number of electrons transferred was two for all modified electrodes.  相似文献   

13.
The electrochemical generation of nitrosophenyl groups covalently attached to graphite powder (nitrosophenylcarbon) from carbon powder chemically modified with nitrophenyl groups and their subsequent reaction with thiols (glutathione, cysteine and homocysteine) has been investigated as a method by which the later can be quantified. The modified carbon powder was immobilized onto a basal plane pyrolytic graphite electrode and characterized by cyclic voltammetry by scanning between 1.0 V and ?1.0 V vs. SCE in phosphate buffer (pH 7). Square wave voltammetry (SWV) was used for the determination of thiols and the SWV parameters were optimized. The nitrosophenylcarbon is electrogenerated from nitrophenylcarbon and can chemically oxidize thiols to disulfides. Subsequent reduction of nitrosophenylcarbon to phenylhydroxylaminecarbon during the square wave voltammetric process leads to a decrease in the reductive current. This can be correlated to the concentration of thiol present within the medium. The cyclic voltammetric responses of basal plane pyrolytic graphite electrode, edge plane pyrolytic graphite electrode, glassy carbon electrode and boron‐doped diamond electrode in the direct oxidation of thiols were also investigated and all were found to have a significantly higher overpotential compared to the described method using nitrosophenylcarbon.  相似文献   

14.
For the first time we report on the electrochemical characteristics of nanometer sized polyhedral graphite onions dispersed amongst arc‐MWCNTs. These are formed during the electric arc discharge method of producing ultrapure MWCNTs (arc‐MWCNTs). The carbon onions are randomly dispersed amongst the arc‐MWCNTs which are produced with very little amorphous carbon deposits or other unwanted impurities and are formed as closed‐ended tubes. By comparison with commercially available open‐ended hollow‐tube multiwalled carbon nanotubes made using the chemical vapor deposition method (cvd‐MWCNTs), a glassy carbon electrode (GCE), an edge‐plane pyrolytic graphite electrode (eppg) and basal plane pyrolytic graphite (bppg) electrode, we can speculate that it is the edge‐plane‐like defect sites that are the electroactive sites responsible for the apparent ‘electrocatalysis’ seen with a wide range of analytes including: ferrocyanide, ruthenium hexaamine(III), nicotinamide adenosine dinucleotide (NADH), epinephrine, norepinephrine, cysteine, and glutathione. The arc‐MWCNTs themselves are produced as closed‐ended tubes with very few, if any, edge‐plane‐like defect sites evident in their HRTEM characterization. Therefore we speculate that it is the carbon onions dispersed amongst the arc‐MWCNTs which have incomplete graphite shells or a rolled‐up ‘Swiss‐roll’ structures that posses the edge‐plane‐like defect sites and are responsible for the observed voltammetric responses. Carbon onions are no more or no less ‘electrocatalytic’ than open‐ended MWCNTs which in turn are no more electrocatalytic than an eppg electrode. As the carbon onions are ubiquitous in MWCNTs formed using the arc‐discharge method the authors advise that caution should be taken before assigning any electrocatalytic behavior to the MWCNTs themselves as any observed electrocatalysis likely arises from the carbon onion impurities.  相似文献   

15.
The electrocatalytic oxidation of oxalate at several carbon based electrodes including basal plane (BPPG) and edge plane (EPPG) pyrolytic graphite and glassy carbon (GC) electrode, was studied. The electrodes were examined for the sensing of oxalate ions in aqueous solutions and all three electrodes showed a response to oxalate additions. The peak of oxalate oxidation at BPPG electrode appeared at lower potential, +1.13 V vs. SCE, than at EPPG (+1.20 V vs. SCE) and GC electrode (+1.44 V vs. SCE). Oxalate oxidation at BPPG electrode was studied in more details for response characteristics (potential and current), effects of pH, temporal characteristics of response potential and current. The results indicated that oxalate oxidation proceeds as two‐electron process at the BPPG electrode with a transfer coefficient β and a diffusion coefficient D evaluated to be 0.45 and 1.03 (±0.04)×10?5 cm2 s?1 respectively. The BPPG electrode was found to be suitable for oxalate determination in aqueous media showing linear response to oxalate concentration with a sensitivity of 0.039 AM?1 and a limit of detection of 0.7 μM.  相似文献   

16.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

17.
The voltammetric responses of chlorine in aqueous acid solutions have been explored using different carbon-based electrodes. Edge-plane pyrolytic graphite has more electrochemical reversibility than glassy carbon, basal-plane pyrolytic graphite, or boron-doped diamond electrodes. A significant reduction in the overpotential is observed on the edge-plane pyrolytic-graphite electrode in contrast with the other carbon-based electrode substrates. These results suggest that edge-plane pyrolytic graphite can be optimally used as the working electrodes in Clark-cell devices for low-potential amperometric gas sensing of Cl2.  相似文献   

18.
The utilization of the capsaicin modified carbon nanotube modified basal‐plane pyrolytic graphite electrode or p‐chloranil modified carbon paste electrodes are presented for the determination of pharmaceutical compounds containing amine functionality, such as benzocaine and lidocaine. In detection of benzocaine at a capsaicin modified electrode, the guaiacol functional group is irreversibly electrochemically oxidized to form the o‐quinone derivative which then undergoes nucleophilic attack by the aromatic amine group in benzocaine via a 1,4‐Michael addition mechanism forming a catechol‐amine adduct. The electrochemically initiated formation of the capsaicin‐benzocaine adduct causes a linear decrease in the voltammetric signal corresponding to capsaicin which correlates to the added concentration of benzocaine.  相似文献   

19.
The combinatorial screening of different metallic nanoparticles as electrocatalysts was investigated and efficiently applied for the detection of hydrazine. In a first step, glassy carbon microspheres decorated with metallic nanoparticles (Au, Pd, and Ag) were abrasively attached on the surface of a basal plane pyrolytic electrode giving a ‘multi–metal’ nanoarray. In a second step, electrodes modified with only one type of metallic nanoparticles allowed the identification of Pd as the unique catalytic material. In addition, a carbon‐epoxy composite electrode loaded with the Pd nanoparticles was then constructed for a practical use. The carbon‐epoxy composite nanoarray electrode was found to have excellent characteristics as for the sensing of hydrazine with a limit of detection of 2 μM.  相似文献   

20.
The choice of solvent is quite important to obtain good protecting surface film on graphite negative electrodes in rechargeable lithium batteries. A subtle difference of the molecular structure of solvent greatly affects the easiness of surface film formation. In order to understand the solvent effects and to elucidate the mechanism of surface film formation, morphology changes of the basal plane of highly oriented pyrolytic graphite were studied using electrochemical scanning tunneling microscopy (EC‐STM). In this article, our recent results of EC‐STM observation in different solvent systems are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号