首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Finite‐element simulation was performed to predict the incompressible Navier–Stokes flow in a domain, partly bounded by an elastic vessel, which is allowed to vary with time. Besides satisfying the physical conservation laws, both surface and the volume conservation laws are satisfied at the discrete level for ensuring the balance between physical and geometrical variables. Several problems which are amenable to analytical solutions were tested for validating the method. The simulated results are observed to agree favourably with analytical solutions. Having verified the applicability of the finite‐element code to problems involving moving grids, we consider an incompressible fluid flow bounded by rigid and elastic vessel walls. Our emphasis was placed on the validation of the formulation developed within the moving‐grid framework. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Hybrid grids consisting of prisms and tetrahedra are employed for the solution of the 3-D Navier–Stokes equations of incompressible flow. A pressure correction scheme is employed with a finite volume–finite element spatial discretization. The traditional staggered grid formulation has been substituted with a collocated mesh approach which uses fourth-order artificial dissipation. The hybrid grid is refined adaptively in local regions of appreciable flow variations. The scheme operations are performed on an edge-wise basis which unifies treatment of both types of grid elements. The adaptive method is employed for incompressible flows in both single and multiply-connected domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
    
We present a projection scheme whose end‐of‐step velocity is locally pointwise divergence free, using a continuous ?1 approximation for the velocity in the momentum equation, a first‐order Crouzeix–Raviart approximation at the projection step, and a ?0 approximation for the pressure in both steps. The analysis of the scheme is done only for grids that guarantee the existence of a divergence free conforming ?1 interpolant for the velocity. Optimal estimates for the velocity error in L2‐ and H1‐norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on which the continuous ?1 approximation for the velocity locks. Since the end‐of‐step velocity is locally solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
An algorithm, based on the overlapping control volume (OCV) method, for the solution of the steady and unsteady two‐dimensional incompressible Navier–Stokes equations in complex geometry is presented. The primitive variable formulation is solved on a non‐staggered grid arrangement. The problem of pressure–velocity decoupling is circumvented by using momentum interpolation. The accuracy and effectiveness of the method is established by solving five steady state and one unsteady test problems. The numerical solutions obtained using the technique are in good agreement with the analytical and benchmark solutions available in the literature. On uniform grids, the method gives second‐order accuracy for both diffusion‐ and convection‐dominated flows. There is little loss of accuracy on grids that are moderately non‐orthogonal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
    
A new adaptive quadtree method for simulating laminar viscous fluid problems with free surfaces and interfaces is presented in this paper. The Navier–Stokes equations are solved with a SIMPLE‐type scheme coupled with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Numerical prediction of two fluid systems with sharp interfaces, Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, 1997) volume of fluid (VoF) method and PLIC reconstruction of the volume fraction field during refinement and derefinement processes. The method is demonstrated for interface advection cases in translating and shearing flow fields and found to provide high interface resolution at low computational cost. The new method is also applied to simulation of the collapse of a water column and the results are in excellent agreement with other published data. The quadtree grids adapt to follow the movement of the free surface, whilst maintaining a band of the smallest cells surrounding the surface. The calculation is made on uniform and adapting quadtree grids and the accuracy of the quadtree calculation is shown to be the same as that made on the equivalent uniform grid. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
    
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

7.
A simple error analysis is used within the context of segregated finite element solution scheme to solve incompressible fluid flow. An error indicator is defined based on the difference between a numerical solution on an original mesh and an approximated solution on a related mesh. This error indicator is based on satisfying the steady‐state momentum equations. The advantages of this error indicator are, simplicity of implementation (post‐processing step), ability to show regions of high and/or low error, and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for solution; first, the lid‐driven cavity problem, followed by the solution of flow over a backward facing step. The solutions are compared to previously published data for validation purposes. It is shown that this rather simple error estimate, when used as a re‐meshing guide, can be very effective in obtaining accurate numerical solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
    
This paper contains a comparison of four SIMPLE‐type methods used as solver and as preconditioner for the iterative solution of the (Reynolds‐averaged) Navier–Stokes equations, discretized with a finite volume method for cell‐centered, colocated variables on unstructured grids. A matrix‐free implementation is presented, and special attention is given to the treatment of the stabilization matrix to maintain a compact stencil suitable for unstructured grids. We find SIMPLER preconditioning to be robust and efficient for academic test cases and industrial test cases. Compared with the classical SIMPLE solver, SIMPLER preconditioning reduces the number of nonlinear iterations by a factor 5–20 and the CPU time by a factor 2–5 depending on the case. The flow around a ship hull at Reynolds number 2E9, for example, on a grid with cell aspect ratio up to 1:1E6, can be computed in 3 instead of 15 h.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
    
The central aim of this paper is the development and application of an efficient, iterative methodology for the computation of the perturbation fields induced by harmonic forcing of the linearised Navier–Stokes equations. The problem is formulated directly in the frequency domain, and the resulting system of equations is solved iteratively until convergence. The method is easily implemented to any implicit code that can solve iteratively the steady‐state Navier–Stokes equations. In this paper, it is applied to investigate the flow around a static cylinder with pulsating approaching flow and a cylinder undergoing forced stream‐wise oscillations. All terms of the perturbation kinetic energy equation are computed, and it is shown that perturbations grow by extracting energy from two sources: the underlying base flow field and the externally provided energy that maintains the imposed oscillation. The periodic drag force acting on the cylinder is also computed, and it is demonstrated that Morrison's equation is a simple model that can estimate with good accuracy the amplitude and phase of this force with respect to the approaching flow. The perturbation fields induced by periodic inlet flow (static cylinder) and forced stream‐wise cylinder oscillation are closely related: the velocity fields are identical in the appropriate reference frames, and a simple expression is derived, which links the pressures in the two flow cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
    
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Two Cartesian grid stretching functions are investigated for solving the unsteady incompressible Navier–Stokes equations using the pressure–velocity formulation. The first function is developed for the Fourier method and is a generalization of earlier work. This function concentrates more points at the centre of the computational box while allowing the box to remain finite. The second stretching function is for the second‐order central finite difference scheme, which uses a staggered grid in the computational domain. This function is derived to allow a direct discretization of the Laplacian operator in the pressure equation while preserving the consistent behaviour exhibited by the uniform grid scheme. Both functions are analysed for their effects on the matrix of the discretized pressure equation. It is shown that while the second function does not spoil the matrix diagonal dominance, the first one can. Limits to stretching of the first method are derived for the cases of mappings in one and two directions. A limit is also derived for the second function in order to prevent a strong distortion of a sine wave. The performances of the two types of stretching are examined in simulations of periodic co‐flowing jets and a time developing boundary layer. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The accuracy of tip vortex flow prediction in the near‐field region is investigated numerically by attempting to quantify the shortcomings of the turbulence models and the flow solver. In particular, some turbulence models can produce a ‘numerical diffusion’ that artificially smears the vortex core. Low‐order finite differencing techniques of the convective and pressure terms of the Navier–Stokes equations and inadequate grid density and distribution can also produce the same adverse effect. The flow over a wing and the near‐wake with the wind tunnel walls included was simulated using 2.5 million grid points. Two subset problems, one using a steady, three‐dimensional analytical vortex, and the other, a vortex obtained from experiment and propagated downstream, were also devised in order to make the study of vortex preservation more tractable. The method of artificial compressibility is used to solve the steady, three‐dimensional, incompressible Navier–Stokes equations. Two one‐equation turbulence models (Baldwin–Barth and Spalart–Allmaras turbulence models), have been used with the production term modified to account for the stabilizing effect of the nearly solid body rotation in the vortex core. Finally, a comparison between the computed results and experiment is presented. Published in 1999 by John Wiley & Sons, Ltd.  相似文献   

13.
The accuracy of colocated finite volume schemes for the incompressible Navier–Stokes equations on non‐smooth curvilinear grids is investigated. A frequently used scheme is found to be quite inaccurate on non‐smooth grids. In an attempt to improve the accuracy on such grids, three other schemes are described and tested. Two of these are found to give satisfactory results. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
    
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In order to simulate flows in the shallow water limit, the full incompressible Navier–Stokes equations with free boundaries are solved using a single layer of finite elements. This implies a polynomial approximation of the velocity profile in the vertical direction, which in turn distorts the wave speed. This fact is verified by numerical results: the wave speed depends on the vertical discretization. When at least two layers of finite elements are used, the boundary layer at the bottom can be simulated and the correct solution for the shallow water limit is recovered. Then this algorithm is applied to the prediction of Tsunami event.  相似文献   

16.
Numerical simulations of viscous flow problems with complex moving and/or deforming boundaries commonly require the solution of the corresponding fluid equations of motion on unstructured dynamic meshes. In this paper, a systematic investigation of the importance of the choice of the mesh configuration for evaluating the viscous fluxes is performed when the semi‐discrete Navier–Stokes equations are time‐integrated using the popular second‐order implicit backward difference algorithm. The findings are illustrated with the simulation of a laminar viscous flow problem around an oscillating airfoil. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A class of lower–upper/approximate factorization (LUAF) implicit weighted essentially non‐oscillatory (ENO; WENO) schemes for solving the two‐dimensional incompressible Navier–Stokes equations in a generalized co‐ordinate system is presented. The algorithm is based on the artificial compressibility formulation, and symmetric Gauss–Seidel relaxation is used for computing steady state solutions while symmetric successive overrelaxation is used for treating time‐dependent flows. WENO spatial operators are employed for inviscid fluxes and central differencing for viscous fluxes. Internal and external viscous flow test problems are presented to verify the numerical schemes. The use of a WENO spatial operator not only enhances the accuracy of solutions but also improves the convergence rate for the steady state computation as compared with using the ENO counterpart. It is found that the present solutions compare well with exact solutions, experimental data and other numerical results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
A refinement to an established method for obtaining benchmark Navier–Stokes solutions is presented. Pressure and body forces are derived explicitly such that the momentum equations are satisfied. The problem is reduced to determining a streamfunction in separation of variables form that describes a desired flow pattern. Examples based upon the well‐known shear flow cavity are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
We compare the performance of different pressure correction algorithms used as basic solvers in a multigrid method for the solution of the incompressible Navier–Stokes equations on non-staggered grids. Numerical tests were performed on several cases of lid-driven cavity flow using four different pressure correction schemes, including the traditional SIMPLE and SIMPLEC methods as well as novel variants, and varying combinations of underrelaxation parameters. The results show that three of the four algorithms tested are robust smoothers for the multigrid solver and that one of the new methods converges fastest in most of the tests. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
We present a numerical comparison of some time-stepping schemes for the discretization and solution of the non-stationary incompressible Navier– Stokes equations. The spatial discretization is by non-conforming quadrilateral finite elements which satisfy the LBB condition. The major focus is on the differences in accuracy and efficiency between the backward Euler, Crank–Nicolson and fractional-step Θ schemes used in discretizing the momentum equations. Further, the differences between fully coupled solvers and operator-splitting techniques (projection methods) and the influence of the treatment of the nonlinear advection term are considered. The combination of both discrete projection schemesand non-conforming finite elementsallows the comparison of schemes which are representative for many methods used in practice. On Cartesian grids this approach encompasses some well-known staggered grid finite difference discretizations too. The results which are obtained for several typical flow problems are thought to be representative and should be helpful for a fair rating of solution schemes, particularly in long-time simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号