首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文合成了负载金纳米颗粒(Au NPs)的NiS纳米材料,通过壳聚糖(CHIT)将其固定在玻碳电极表面作为电化学生物传感器的固定基质。将C-反应蛋白(CRP)抗体固定到修饰过的玻碳电极表面,利用二茂铁甲酸标记CRP抗体,构建夹心型CRP生物传感器。采用差分脉冲伏安法(DPV)检测标记物二茂铁甲酸在0.3V左右的特征峰信号,该电流与培育的CRP抗原量成正比,从而实现对CRP的定量检测。传感器检测CRP的线性范围为0.01~500ng/mL,线性相关系数为0.9939,检测限为3.3pg/mL。  相似文献   

2.
In this work, a novel sandwich-type electrochemical immunosensor based on host-guest interaction was fabricated for the detection of alpha-fetoprotein (AFP). Due to the large specific surface area of multiwalled carbon nanotubes and the unique supramolecular recognition ability of β-cyclodextrins, ferrocenecarboxylic acid (Fc) was incorporated into this sensor platform by host-guest interaction to generate an electrochemical signal. And β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase (GOD-CD-Ag), was used as a label to improve the analytical performance of the immunosensor by the dual amplification strategy. The obtained GOD-CD-Ag conjugates could convert glucose into gluconic acid with the formation of hydrogen peroxide (H2O2). And then silver nanoparticles could in situ catalyze the reduction of the generated H2O2, dramatically improving the oxidation reaction of Fc. The developed immunosensor shows a wide linear calibration range from 0.001 to 5.0 ng/mL with a low detection limit (0.2 pg/mL) for the detection of AFP. The method, with ideal reproducibility and selectivity, has a wide application prospect in clinical research.  相似文献   

3.
A new immunosensor is presented for human chorionic gonadotropin (hCG), made by electrodepositing chitosan/gold‐nanoparticles over graphene screen‐printed electrode (SPE). The antibody was covalently bound to CS via its Fc‐terminal. The assembly was controlled by electrochemical Impedance Spectroscopy (EIS) and followed by Fourier Transformed Infrared (FTIR). The hCG‐immunosensor displayed linear response against the logarithm‐hCG concentration for 0.1–25 ng/mL with limit of detection of 0.016 ng/mL. High selectivity was observed in blank urine and successful detection of hCG was also achieved in spiked samples of real urine from pregnant woman. The immunosensor showed good detection capability, simplicity of fabrication, low‐cost, high sensitivity and selectivity.  相似文献   

4.
A simple and sensitive electrochemical immunosensor was conducted for the determination of human chorionic gonadotropin (hCG) with Pd@SBA‐15. Thionine (TH) was selected as an electron transfer mediator, and modified onto the electrode together with functionalized graphene nanomaterial (HSO3?GS) through electrostatic adsorption. Then Pd@SBA‐15 was immobilized onto the as‐prepared film for biomolecules anchoring. Pd@SBA‐15 composites not only retain the good biocompatibility of the SBA‐15, but also exhibit an excellent catalytic activity of Pd and low Pd leaching. hCG antibody was immobilized onto the composite film for the detection of hCG. hCG can be determined in the range of 0.01–16.00 ng/mL and the detection limit is 8.60 pg/mL. The method has been applied to the analysis of hCG in human serum samples with satisfactory results.  相似文献   

5.
A sensitive immunosensor for the detection of pregnancy marker, human chorionic gonadotropin hormone (hCG), was developed using the direct electrical detection of Au nanoparticles. We utilized disposable screen‐printed carbon strips (SPCSs) for the development of our immunosensor, which provided cost‐effective tests with the required antigen sample volume as small as 2 μL. After the recognition reaction between the surface‐immobilized primary antibody and hCG, the captured antigen was sandwiched with a secondary antibody that was labeled with Au nanoparticles. Au nanoparticles were exposed to a preoxidation process at 1.2 V for 40 s, which was subsequently followed with a reduction scan on the same surface using differential pulse voltammetry (DPV). We could observe Au nanoparticle‐labeled antigen‐antibody complexes immobilized on the surface of SPCS using scanning electron microscopy (SEM). Additionally, the number of Au nanoparticles on the immunosensor was determined using SEM images, and showed a linear relationship with the current intensity obtained from the DPV measurements with a detection limit of 36 pg/mL hCG (612 fM, 3.6×10?4 IU/mL). Our immunosensor system, a combination of the screen‐printing technology with Au nanoparticles provides a promising biosensor for various applications in life sciences.  相似文献   

6.
《Electroanalysis》2006,18(17):1696-1702
A novel electrochemical immunosensor for human chorionic gonadotrophin (hCG) was proposed by immobilization of hCG in gold nanoparticles doped three‐dimensional (3D) sol‐gel matrix and an interfacial competitive immunoreaction. The 3D organized composite structure was prepared by assemble of gold nanoparticles into a hydrolyzed (3‐mercaptopropyl)‐trimethoxysilane sol‐gel matrix, which showed good biocompatibility. After the interfacial competitive immunoreaction the formed HRP‐labeled immunoconjugate showed good enzymatic activity for the oxidation of o‐phenylenediamine by H2O2. With a competitive format, a method comprising of o‐phenylenediamine‐H2O2‐immobilized HRP labeled hCG immunoconjugate system for immunoassay of hCG from 5.0 to 30.0 mIU mL?1 was developed. The immunosensor showed good precision, high sensitivity, acceptable stability and reproducibility and could be used for detection of hCG in human serum with the consistent results in comparison with those obtained by a commercial analyzer.  相似文献   

7.
The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 U mL−1 with a coefficient 0.9986 and a detection limit of 0.64 U mL−1 at S/N = 3.  相似文献   

8.
《Electroanalysis》2006,18(7):670-676
A human chorionic gonadotrophin (hCG) doped gold nanoparticles–chitosan membrane was prepared for forming an immunoconjugate of horseradish peroxidase labeled hCG antibody and hCG on glassy carbon electrode. The nanoparticles provided a congenial environment of the adsorbed proteins. Thus, the immobilized HRP‐labeled immunoconjugate showed good enzymatic activity for the oxidation of o‐phenylenediamine by H2O2. With a competitive mechanism, an amperometric method for immunoassay of hCG up to 30 mIU mL?1 with a relatively low detection limit of 0.26 mIU mL?1 at 3σ was developed. The hCG immunosensor showed good precision, high sensitivity, acceptable stability and reproducibility.  相似文献   

9.
Circular dichroism measurements show that β-cyclodextrin with an amino moiety has a strong binding ability for ferrocenecarboxylic acid in dimethyl sulfoxide via an acid-base interaction.  相似文献   

10.
A novel, sensitive electrochemical immunosensor for simultaneous determination of squamous cell carcinoma associated antigen (SCC-Ag) and carcinoembryonic antigen (CEA) for the combined diagnosis of cervical cancer was designed. The amplification strategy for electrochemical immunoassay was based on poly[3-(1,1′-dimethyl-4-piperidine-methylene) thiophene-2,5-diylchloride] (PDPMT-Cl) and functionalized mesoporous ferroferric oxide nanoparticles (Fe3O4 NPs). PDPMT-Cl dispersed in chitosan solution with enhanced electrical conductivity and solubility was used as matrices to immobilize the first antibodies. Different redox probes (thionine (Th) and ferrocenecarboxylic acid (Fca)) functionalized Fe3O4 NPs incubated with two kinds of secondary antibodies to fabricate the labels. Using an electrochemical analysis technique, two well-separated peaks were generated by Th and Fca, making the simultaneous detection of two analytes on the electrode possible. Under optimized conditions, this method showed wide linear ranges of three orders of magnitude with the detection limits of 4 pg mL−1 and 5 pg mL−1, respectively. The disposable immunosensor possessed excellent clinical value in cervical cancer screening as well as convenient point-of-care diagnostics.  相似文献   

11.
A label-free electrochemical biosensor for detecting DNA hybridisation was developed by monitoring the change in the voltammetric activity of ferrocenecarboxylic acid at the biosensor–solution interface. The biosensor was constructed by initially immobilising on a glassy carbon electrode an anchoring layer consisting of chitosan, carboxyl group functionalised carbon nanofibres and glutaraldehye. Chitosan acted as an adhering agent and carbon nanofibres were strategically used to provide a large surface area with binding points for DNA immobilisation, while glutaraldehye was a linker for DNA probes on the electrode surface. Based on a two-factorial design, cyclic voltammetry of [Fe(CN)6]3−/4− was performed to optimise the composition of the anchoring layer. Next, a 17-base pair DNA probe was attached to the anchoring layer, followed by its complementary target. Zr(IV) ion, known to exhibit affinity for oxygen-containing electroactive markers, for example, ferrocenecarboxylic acid, was then coordinated in the DNA duplex. In this way, ferrocenecarboxylic acid was attracted towards the biosensor for oxidation. A change in the voltammetric oxidation current of ferrocenecarboxylic acid pre- and post-hybridisation was used to provide an indication of hybridisation. A linear dynamic range between 0.5 and 40 nM and a detection limit of 88 pM of DNA target were then achieved. In addition, the biosensor exhibited good selectivity, repeatability and stability for the determination of DNA sequences.  相似文献   

12.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

13.
An Immunosensor for the detection of polychlorinated biphenyls (PCB) has been developed, using carbon-based screen-printed electrodes as solid-phase and signal transducers. The immunosensor realised is based on a direct competitive immunoassay scheme, in which the antibody against PCB was directly immobilised onto the carbon surface of the screen-printed electrode. Competition between the PCBs present in the sample and a fixed concentration of an enzyme-labelled congener was realised and evaluated by electrochemical detection. The immunosensor developed was tested on Arochlor mixtures (1242 and 1248), and was applied in environmental and food analysis by testing some real samples (from animal tissues and marine sediments). Results obtained demonstrate the ability of this device to detect PCBs in complex matrices.  相似文献   

14.
The orientation of the analyte-specific capture antibody on the surface of electrochemical immunosensors plays an important role on their overall performance. We have employed a self-assembled layer of Protein G that was thiolated with succinimidyl-6-[3′-(2-pyridyldithio)-propionamido] hexanoate for the orientation-controlled immobilisation of a capture antibody in a flow-type amperometric immunosensor based on a two-site sandwich immunoassay. After establishing the formation of the thiolated Protein G layer on 1-mm screen printed electrodes, amperometric immunosensors for the detection of the hormone, human chorionic gonadotrophin (hCG), were successfully constructed upon this scaffold. These sensors were characterised by a limit of detection (based on three times the standard deviation of the blank signal) of 175 IU l−1 and a linear response up to approximately 5000 IU l−1 of hCG.  相似文献   

15.
Truong LT  Chikae M  Ukita Y  Takamura Y 《Talanta》2011,85(5):2576-2580
In this work, a sensitive label-free impedimetric hCG-immunosensor was constructed by using a commercial screen-printing carbon ink electrode (namely disposable electrochemical printed chip) as the basis. The carbon ink electrode of DEP chip is modified first by deposition of polypyrrole-pyrole-2-carboxylic acid copolymer and thence hCG antibody immobilization via the COOH groups of pyrrole-2-carboxylic acid, which can serve as a linker for covalent biomolecular immobilization. The experimental results exposed that the designed immunosensor is more sensitive than other previously reported immunosensors, in the case of detection limit and linear range for antigen detection. With optimal fabrication parameters, the detection limit for α-hCG was 2.3 pg/mL in 10 mM phosphate buffer saline (PBS) solution containing 1% bovine serum albumine (BSA). Moreover, the use of inexpensive DEP chip as a basis for these immunosensors will allow for simple instrumentation, disposable and portable at low cost. This work also demonstrates a new approach to develop a sensitive and label-free impedimetric immunosensor based on screen-printed electrode for applications in clinical diagnosis.  相似文献   

16.
A glucose oxidase (GOD) and ferrocene (Fc) dually functionalized gold nanoprobe was simply prepared for electrochemical immunoassay. By combination with sandwich immunoreaction at a carbon nanotube (CNT)‐based immunosensor and signal tracing of the nanoprobe through the Fc‐mediated GOD‐catalytic reaction, a new electrochemical immunoassay method was successfully developed. Both the multi‐enzyme signal amplification of the nanoprobe and the electron transfer promotion of the CNTs modified on the immunosensor greatly enhanced the signal response. Thus this method showed excellent analytical performance including ultrahigh sensitivity, wide linear range as well as good specificity, reproducibility, stability and reliability for human IgG measurement.  相似文献   

17.
In this work, an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor using in situ generation of l-homocysteine (l-Hcys) for signal amplification was successfully constructed for detection of carcinoembryonic antigen (CEA). In the reaction of biological methylation, S-adenosyl-l-homocysteine hydrolase (SAHH) catalyzed the reversible hydrolysis of S-adenosyl-l-homocysteine (SAH) to produce l-Hcys, which was inducted into ECL system to construct the immunosensor for signal amplification in this work. Simultaneously, Gold and palladium nanoparticles functionalized multi-walled carbon nanotubes (Au-PdNPs@MWCNTs) were prepared, which were introduced to immobilize the secondary antibody (Ab2) and SAHH with high loading amount and good biological activity due to their improved surface area and excellent biocompatibility. Then the proposed ECL immunosensor was developed by a sandwich-type format using Au-PdNPs@MWCNTs-SAHH-Ab2 as tracer and graphene together with AuNPs as substrate. Besides the enhancement of Au-PdNPs, the enzymatic catalysis reaction also amplified the ECL signal dramatically, which was achieved by efficient catalysis of the SAHH towards the hydrolysis of SAH to generate improved amount of l-Hcys in situ. Furthermore, due to the special interaction between Au-PdNPs and -SH or -NH2 in l-Hcys, l-Hcys would gradually accumulate on the surface of the immunosensor, which greatly enhanced the concentration of l-Hcys on the immunosensor surface and further improved the ECL intensity. With the amplification factors above, a wide linear ranged from 0.1 pg mL−1 to 80 ng mL−1 was acquired with a relatively low detection limit of 33 fg mL−1 for CEA.  相似文献   

18.
A new dual‐amplification strategy of electrochemical signaling from antigen–antibody interactions was proposed via backfilling gold nanoparticles on (3‐mercaptopropyl) trimethoxysilane sol‐gel (MPTS) functionalized interface. The MPTS was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization with first amplification. The second signal amplification strategy introduced in this study was based on the backfilling immobilization of nanogold particles to the immunosensor surface. Several coupling techniques, such as with nanogold but not MPTS or with MPTS but not nanogold, were investigated for the determination of carcinoembryonic antigen (CEA) as a model, and a very good result was obtained with nanogold and MPTS coupling immunosensor. With the noncompetitive format, the formation of the antigen–antibody complex by a simple one‐step immunoreaction between the immobilized anti‐CEA and CEA in sample solution introduced membrane potential change before and after the antigen–antibody interaction. Under optimal conditions, the proposed immunosensor exhibited a good electrochemical behavior to CEA in a dynamic concentration range of 4.4 to 85.7 ng/mL with a detection limit of 1.2 ng/mL (at 3 δ). Moreover, the precision, reproducibility and stability of the as‐prepared immunosensor were acceptable. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of carcinoma and its metastasis.  相似文献   

19.
A new label-free amperometric immunosensor was developed for detection of human chorionic gonadotrophin (hCG) based on multiwall carbon nanotubes-chitosan (MWNTs-CS) complex film and three-dimensional AuNPs-TiO(2) hybrid. Firstly, MWNTs-CS film was deposited on a glassy carbon electrode (GCE) by a simple and controllable electrodeposition method. Next, thionine (Thi), as a redox probe, was covalently bound onto the MWNTs-CS film with glutaraldehyde (GA) to obtain the Thi/MWNTs-CS film. The free amino groups of the composite membrane were used to adsorb AuNPs-TiO(2) for immobilizing human chorionic gonadotrophin antibody (anti-hCG) because of its large surface area and satisfactory biocompatibility. At last, BSA was employed to block possible remaining active sites. Under optimized conditions, the immunosensor displayed high sensitivity, good reproducibility, and a low detection limit of 0.08mIU/mL at 3 times the background noise. The ease of non-manual technique and the promising feature of biocomposite could serve as a versatile platform for constructing other biosensors.  相似文献   

20.
The detection of nucleic acid biomarkers for point‐of‐care (POC) diagnostics is currently limited by technical complexity, cost, and time constraints. To overcome these shortcomings, we have combined loop‐mediated isothermal amplification (LAMP), programmable toehold‐mediated strand‐exchange signal transduction, and standard pregnancy test strips. The incorporation of an engineered hCG–SNAP fusion reporter protein (human chorionic gonadotropin‐O6‐alkylguanine‐DNA alkyltransferase) led to LAMP‐to‐hCG signal transduction on low‐cost, commercially available pregnancy test strips. Our assay reliably detected as few as 20 copies of Ebola virus templates in both human serum and saliva and could be adapted to distinguish a common melanoma‐associated SNP allele (BRAF V600E) from the wild‐type sequence. The methods described are completely generalizable to many nucleic acid biomarkers, and could be adapted to provide POC diagnostics for a range of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号