首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过使用带正电荷的ZnO溶胶-凝胶在玻碳电极表面固定酶,研制了一种简单有效的酪氨酸酶传感器。结果表明,ZnO溶胶-凝胶的等电点为酪氨酸酶的固定提供了有利的微环境,酪氨酸酶能很好地保持其生物活性。所研制的传感器达到95%稳定状态电流的时间在10 s以内。酚类化合物可通过酶催化产生的醌在-200 mV(对饱和甘汞电极)直接还原而测定,传感器对苯酚测定的灵敏度为168μA.mmol-1.L-1,线性范围为1.5×10-7~4.0×10-5mol.L-1,检出限为8.0×10-8mol.L-1。该传感器使用二周后活性仍保持原有活性的75%。  相似文献   

2.
Gold electrodes were modified with submonolayers of 3‐mercaptopropionic acid and further reacted with poly(amidoamine) (PAMAM) dendrimers to obtain thin films. The high affinity of PAMAM dendrimer for nano‐Au with its amine groups was used to realize the role of nano‐Au as an intermediator to immobilize the enzyme of tyrosinase. The characterization of the modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy (AFM). Tyrosinase can catalyze the oxidation of catechol to o‐benzoquinone. When penicillamine was added to the solution, it reacted with o‐benzoquinone to form the corresponding thioquinone derivatives, which resulted in decrease of the reduction current of o‐benzoquinone. Based on this, a new electrochemical sensor for determination of penicillamine has been developed.  相似文献   

3.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

4.
A tyrosinase (Tyr) biosensor was fabricated by immobilizing Tyr on the surface of multiwalled carbon nanotubes (MWNTs)‐chitosan (Chit) composite modified glassy carbon electrode (GCE). The MWNTs‐Chit composite film provided a biocompatible platform for the Tyr to retain the bioactivity and the MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate. The Tyr/MWNTs‐Chit/GCE biosensor showed high sensitivity (412 mA/M), broad linear response (1.0×10?8–2.8×10?5 M), low detection limit (5.0 nM) and good stability (remained 93% after 10 days) for determination of phenol. The biosensor was further applied to rapid detection of the coliforms, represented by Escherichia coli (E. coli) in this work. The current responses were proportional to the quantity of coliforms in the range of 104–106 cfu/mL. After 5.0 h of incubation, E. coli could be detected as low as 10 cfu/mL.  相似文献   

5.
聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器   总被引:7,自引:4,他引:7  
用循环伏安法在玻碳电极上电聚合一层稳定的亚甲蓝聚合物膜,研究了这层膜在0.1mol/L磷酸缓冲溶液(pH7.0)中的电化学性质。用纳米金溶胶与聚乙烯醇缩丁醛(PVB)构成复合固酶基质,采用溶胶-凝胶法固定葡萄糖氧化酶(GOD)于亚甲蓝修饰的玻碳电极表面,制成了新型葡萄糖生物传感器。实验发现,加入纳米金后提高了酶电极对葡萄糖的电流响应,所制备的传感器具有响应快、灵敏度高、稳定性好,对葡萄糖的线性响应范围为1×10-6~3×10-3mol/L,检出限为5×10-7mol/L。并具有抗尿酸、抗坏血酸干扰的特点。  相似文献   

6.
《Electroanalysis》2006,18(3):259-266
In this paper, a new strategy for constructing a mediator‐type amperometric hydrogen peroxide (H2O2) microbiosensor was described. An electropolymerized thionine film (PTH) was deposited directly onto a gold electrode surface. The resulting redox film was extremely thin, adhered well onto a substrate (electrode), and had a highly cross‐linked network structure. Consequently, horseradish peroxidase (HRP) was successfully immobilized on nanometer‐sized Au colloids, which were supported by thiol‐tailed groups of 11‐mercaptoundecanoic acid (11‐MUA) monolayer covalently bound onto PTH film. With the aid of the PTH mediator, HRP‐labeled Au colloids microbiosensor displayed excellent electrocatalytical response to the reduction of H2O2. This matrix showed a biocompatible microenvironment for retaining the native activity of the covalent HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H2O2. The proposed H2O2 microbiosensor exhibited linear range of 3.5 μM–0.7 mM with a detection limit of 0.05 μM (S/N=3). The response showed a Michaelis‐Menten behavior at larger H2O2 concentrations. The KMapp value for the biosensors based on 24 nm Au colloids was found to be 47 μM, which demonstrated that HRP immobilized on Au colloids exhibited a high affinity to H2O2 with no loss of enzymatic activity. This microbiosensor possessed good analytical performance and storage stability.  相似文献   

7.
《Electroanalysis》2004,16(16):1305-1310
A novel amperometric biosensor was constructed for the determination of phenols in pure organic phase. This biosensor was fabricated by immobilizing tyrosinase in a titania sol‐gel membrane which was obtained with a vapor deposition method. This method was facile and avoided the calcination step needed in conventional titania sol‐gel process. The titania sol‐gel membrane could effectively retain the essential water layer around the enzyme molecule needed for maintaining its activity in organic phase. The experimental parameters such as solvent and operating potential were optimized. At ?100 mV this biosensor showed a good amperometric response to phenols in pure chloroform without any mediator and rehydration of the enzyme. For catechol determination the sensor exhibited a fast response of less than 5 seconds. The sensitivity of different phenols was as follows: catechol > phenol > p‐cresol. Additionally, the apparent Michaelis‐Menten constants of the encapsulated tyrosinase to catechol, phenol and p‐cresol were found to be 0.15±0.003, 0.17±0.008 and 0.21±0.004 mM, respectively. The biosensor had also good reproducibility and stability. This work provided a promising platform for the construction of pure organic phase biosensors and the determination of substrates with poor water solubility.  相似文献   

8.
A study was been made of tyrosinase amperometric biosensors for the determination of organophosphorus (dichlorvos) and triazine (atrazine) pesticides. The biosensors are based on the competitive inhibition of tyrosinase (Tyr) by the pesticides. Tyr becomes active when the reduced form of the charge‐transfer mediator (1,2‐naphthoquinone‐4‐sulfonic acid (NQS), 1,2‐naphthoquinone (NQ) and 3,5‐di‐tert‐butyl‐1,2‐benzoquinone (t‐BQ) were tested) are electrochemically generated onto the working electrode surface, which permits modulation of the enzymatic activity. The inhibition is reversible as there is a complete recovery of the current due to enzyme activity without the studied pesticides. The charge‐transfer mediators (the quinonic molecules) and the enzyme were co‐immobilized on the working electrode to obtain reagentless biosensors. Kinetic studies in solution were carried out to compare the efficiency of the measurement mechanism.  相似文献   

9.
《Electroanalysis》2004,16(17):1385-1392
A bienzyme biosensor in which the enzymes β‐galactosidase (β‐Gal), fructose dehydrogenase (FDH), and the mediator tetrathiafulvalene (TTF) were coimmobilized by cross‐linking with glutaraldehyde atop a 3‐mercaptopropionic acid (MPA) self‐assembled monolayer on a gold disk electrode, is reported. The working conditions selected were Eapp=+0.10 V and (25±1) °C. The useful lifetime of one single TTF‐β‐Gal‐FDH‐MPA‐AuE was surprisingly long, 81 days. A linear calibration plot was obtained for lactulose over the 3.0×10?5–1.0×10?3 mol L?1 concentration range, with a limit of detection of 9.6×10?6 mol L?1. The effect of potential interferents (lactose, glucose, galactose, sucrose, and ascorbic acid) on the biosensor response was evaluated. The behavior of the SAM‐based biosensor in flow‐injection systems in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining lactulose in a pharmaceutical preparation containing a high lactulose concentration, and in different types of milk. Finally, the analytical characteristics of the TTF‐β‐Gal‐FDH‐MPA‐AuE are critically compared with those reported for other recent enzymatic determinations of lactulose.  相似文献   

10.
11.
《Electroanalysis》2004,16(9):757-764
Colloidal Au particles have been deposited on the gold electrode through layer‐by‐layer self‐assembly using cysteamine as cross‐linkers. Self‐assembly of colloidal Au on the gold electrode resulted in an easier attachment of antibody, larger electrode surface and ideal electrode behavior. The redox reactions of [Fe(CN)6]4?/[Fe(CN)6]3? on the gold surface were blocked due to antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.0 with various concentrations of antigen at 37 °C for 30 min. Further, an amplification strategy to use biotin conjugated antibody was introduced for improving the sensitivity of impedance measurements. Thus, the sensor based on this immobilization method exhibits a large linear dynamic range, from 5–400 μg/L for detection of Human IgG. The detection limit is about 0.5 μg/L.  相似文献   

12.
Self‐assembled hollow nanosphere composites of polyaniline and Au nanoparticles (PANI‐p‐TSA/Au) were chemically synthesized from solutions containing p‐toluenesulfonic acid (p‐TSA) with the addition of gold chloride trihydrate as the oxidant. The composite materials were characterized by SEM, TEM, and a range of spectroscopic methods. Spectroscopic characterizations confirmed that the polymeric product is a form of doped PANI, while electron diffraction and X‐ray diffraction showed that elemental Au was present in the PANI‐p‐TSA/Au nanocomposites. The room temperature electrical conductivity of the PANI‐p‐TSA/Au nanocomposites was two orders of magnitude greater than a PANI‐p‐TSA obtained in the presence of ammonium persulfate as the oxidant under the same conditions.

  相似文献   


13.
14.
The development of a DNA biosensor for the detection of cylindrospermopsin, based on self‐assembled monolayers (SAMs) of 4‐aminothiophenol, is investigated. SAMs were characterized by electrochemical reductive desorption. Detection of probe immobilization and hybridization has been achieved by cyclic and square‐wave voltammetry (SWV), using methylene blue (MB) as electroactive indicator. The SWV data obtained in phosphate buffer, with and without NaCl, after MB accumulation, revealed an increase of the redox indicator current peaks after the hybridization step. This behavior is consistent with MB intercalation into DNA, for high ionic strength media and attributed to electrostatic interactions in the absence of salt. Evidence for surface modification is also provided by atomic force microscopy and ellipsometry.  相似文献   

15.
Novel carbosilane dendrimers based on 1,6-hexanediol were prepared by divergent approach. Using 1,6-hexanediol-based diallyl ether as the core molecule, the dendrimers were prepared to the third generation with 54 allyl groups on the periphery by alternate hydrosilylation-allylation reactions.  相似文献   

16.
《中国化学》2017,35(8):1305-1310
A novel biosensor was fabricated based on the immobilization of tyrosinase and N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles onto the surface of the glassy carbon electrode via the film forming by chitosan. The NAC‐AuNPs (N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles) with the average size of 3.4 nm had much higher specific surface area and good biocompatibility, which were favorable for increasing the immobilization amount of enzyme, retaining the catalytic activity of enzyme and facilitating the fast electron transfer. The prepared biosensor exhibited suitable amperometric responses at −0.2 V for phenolic compounds vs. saturated calomel electrode. The parameters of influencing on the working electrode such as pH , temperature, working potential were investigated. Under optimum conditions, the biosensor was applied to detect catechol with a linear range of 1.0 × 10−7 to 6.0 × 10−5 mol•L−1 , and the detection limit of 5.0 × 10−8 mol•L−1 (S /N =3). The stability and selectivity of the proposed biosensor were also evaluated.  相似文献   

17.
《Electroanalysis》2005,17(8):668-673
A self‐sampling‐and‐flow biosensor was fabricated by sandwiching a nitrocellulose strip on the working electrode side of the double‐sided microporous gold electrodes and a wicking pad on the counter electrode side. The double‐sided microporous electrodes were formed by plasma sputtering of gold on a porous nylon substrate. Sample was taken up to the enzyme‐immobilized working electrode by the capillary action of the front nitrocellulose strip dipped into the sample solution, analyzed electrochemically at the enzyme‐immobilized electrode, and diffuses out to the backside wicking pad through the micropores of the electrodes, constituting a complete flow cell device with no mechanical liquid‐transporting device. Biosensor was formed by co‐immobilizing the glucose oxidase and electron transfer mediator (ferrocene acetic acid) on the thioctic acid self‐assembled monolayer‐modified working electrode. A typical response time of the biosensor was about 5 min with the sensitivity of 2.98 nA/mM glucose, providing linear response up to 22.5 mM. To demonstrate the use of self‐sampling‐and‐flow biosensor, the consumption rate of glucose in the presence of yeast was monitored for five days.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号