首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
《Electroanalysis》2004,16(17):1439-1443
A film of poly‐L ‐lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross‐linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation.  相似文献   

2.
Multilayer films consisting of carboxymethylcellulose (CMC) and ferrocene‐modified poly(ethyleneimine) (Fc‐PEI) or poly(allylamine hydrochloride) (Fc‐PAH) were successfully prepared on a gold electrode to examine their redox properties. The redox current of (Fc‐PEI/CMC)n film‐coated electrodes increased with the number of layers, while the (Fc‐PAH/CMC)n film‐coated electrodes exhibited increased response only for the first eight bilayers. The (Fc‐PEI/CMC)n and (Fc‐PAH/CMC)n films deposited on the surface of Fc‐free multilayer film‐coated electrodes also showed a redox response. The (PEI/CMC)5 film‐coated electrode showed redox responses in Fc‐PEI and Fc‐PAH solutions, confirming the uptake of the Fc‐polymers in the inner film. In contrast, the uptake of the Fc‐polymers in the (PAH/CMC)5 film was severely suppressed, suggesting that different permeability of (PEI/CMC)5 and (PAH/CMC)5 films.  相似文献   

3.
A novel sensor have been constructed by layer‐by‐layer hybridizing phosphomolybdate (POM) and poly(ferrocenylsilane) (PFS) on a cysteamine modified gold electrode. The properties and performance of the sensor have been measured by electrochemistry and atomic force microscopy in detail. The results showed that the constructed multilayers modified gold electrode combined the properties of POM and PFS, and exhibited good electrocatalytic ability to a series of inorganic ions, including BrO , IO , NO , Fe3+, ascorbic acid and SO . The well catalytic activity of the sensor was ascribed to the porous structure of hybrid POM‐PFS multilayer. The resulted sensor exhibited extremely fast amperometric response, low detection limit, high selectivity and wide linear range to these analyses.  相似文献   

4.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

5.
Voltammetric studies of rabbit liver metallothioneins (MTs, containing both Zn and Cd ions) and Zn7‐MT were carried out at Nafion‐coated mercury film electrodes (NCMFEs). The accumulation of MT molecules into the NCMFEs enhances the voltammetric signals and the electrostatic interaction between the Nafion membrane and MT facilitates facile electron transfer reactions. Two well‐defined redox waves, with reduction potential (Epc) values at ?0.740 and ?1.173 V, respectively, were observed. The peak at Epc =?0.740 V is attributable to the reduction of the Cd‐MT complex, whereas that at Epc=?1.173 V was assigned to the reduction of the Zn‐MT complex. Zn7‐MT exhibits only one redox wave with Epc=?1.198 V. The NCMFE was found to be more advantageous than thin mercury film electrode (MFE), because the pristine metal ions in MTs (e.g., Cd2+ and/or Zn2+) are not significantly replaced by Hg2+. The NCMFE is also complementary to Nafion‐coated bismuth film electrode in that it has a greater hydrogen overpotential, which allows the reduction of the Zn‐MT complex to be clearly observed. Moreover, intermetallic compound formation between Cd and Zn appears to be less serious at NCMFEs. Consequently, the amounts of Cd and Zn deposited into the electrode upon the reduction reactions can be quantified more accurately.  相似文献   

6.
The electrochemical reduction of three common insecticides such as cypermethrin (CYP), deltamethrin (DEL) and fenvalerate (FEN) was investigated at glassy carbon electrode (GCE), multiwalled carbon nanotubes modified GCE (MWCNT‐GCE), polyaniline (herein called as modifier M1) and polypyrrole (herein called as modifier M2) deposited MWCNT/GCE using cyclic voltammetry. Influences of pH, scan rate, and concentration were studied. The surface morphology of the modified film was characterized by scanning electron microscopy (SEM) and X‐ray diffraction analysis (XRD). A systematic study of the experimental parameters that affect differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived at. The calibration plots were linear over the insecticide's concentration range 0.1–100 mg L?1 and 0.05–100 mg L?1 for all the three insecticides at MWCNT‐GCE and MWCNT(M1)‐GCE respectively. The MWCNT(M2)‐GCE performed well among the three electrode systems and the determination range obtained was 0.01–100 mg L?1 for CYP, DEL and FEN. The limit of detection (LOD) was 0.35 μg L?1, 0.9 μg L?1 and 0.1 μg L?1 for CYP, DEL and FEN respectively on MWCNT(M2)‐GCE modified system. Suitability of this method for the trace determination of insecticide in spiked soil sample was also determined.  相似文献   

7.
LbL nano self‐assembly coating of A. vinosum with different polyelectrolyte combinations is presented as an example to investigate substrate uptake in bacteria. The effects of surface charge and the formation of a physical barrier provides new insights in the contact mechanisms between the cell surface and insoluble elemental sulfur. Furthermore, uptake of sulfide by encapsulated cells was investigated. Growth experiments of coated cells showed that surface charge did neither affect sulfide uptake nor the contact formation between the cells and solid sulfur. However, increasing layers slowed or inhibited the uptake of sulfide and elemental sulfur. This work demonstrates how defining surface properties of bacteria has potential for microbiological and biotechnological applications.

  相似文献   


8.
A layer‐by‐layer (LbL) thin film composed of poly(ethyleneimine) (PEI) and carboxymethyl cellulose (CMC) was prepared on the surface of a gold (Au) disk electrode and the LbL layer was impregnated with hemin to fabricate amperometric hydrogen peroxide (H2O2) sensors. Hemin can be easily immobilized in the LbL layer by immersing the LbL film‐coated electrode in the hemin solution. The hemin‐modified electrode thus prepared exhibited an amperometric response to H2O2 on the basis of the electrochemical reduction catalyzed by hemin. The output current of the hemin‐modified electrode depended on the concentration of H2O2 over the range of 0.005–1.0 mM. Thus, the LbL film composed of PEI and CMC was found to be an excellent material for the facile preparation of hemin‐based H2O2 sensors.  相似文献   

9.
We report on the electrochemical behaviour and electropolymerization of self‐assembled monolayers (SAMs) of methylene blue (MB) on gold electrodes. The SAMs of MB on gold electrodes were prepared by immersing the substrates into a solution of 1.0 mM MB in absolute ethanol for different times at room temperature. Cyclic voltammetry experiments exhibited that reductive desorption of MB monolayer takes place at three different potentials on polycrystalline gold electrodes, while reductive desorption of MB monolayer consists of only one peak on single crystal Au(111) substrates. Calculated charge densities for different immersion times indicated that optimal immersion time for self‐assembly of MB is 96 h. Electropolymerization of SAMs of MB on gold electrode was achieved by applying 0.95 V for 1 s in 0.1 M borate buffer solution (pH: 9.0). It was observed that poly(MB) monolayers are highly stable in acidic media. ATR‐FTIR and UV‐vis spectra exhibited differences between monomer and polymer monolayers, which are attributed to surface‐confined electropolymerization. STM image of poly(MB) monolayer on Au(111) substrate revealed a surface that is covered by well‐ordered, collateral nanowires with an average size of 3 nm.  相似文献   

10.
L ‐Tyrosine can exhibit a small anodic peak on multiwalled carbon nanotubes (MWCNTs) coated glassy carbon electrodes (GCE). At pH 5.5 its peak potential is 0.70 V (vs. SCE). When an ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, [omim][PF6]) is introduced on the MWCNT coat, the peak becomes bigger. Furthermore, in the presence of Cu2+ ion the anodic peak of L ‐tyrosine increases further due to the formation of Cu2+‐L ‐tyrosine complex, while the peak potential keeps unchanged. Therefore, a sensitive voltammetry based on the oxidation of Cu2+‐L ‐tyrosine complex on MWCNTs‐[omim][PF6] composite coated electrode is developed for L ‐tyrosine. Under the optimized conditions, the anodic peak current is linear to L ‐tyrosine concentration in the range of 1×10?8–5×10?6 M, and the detection limit is 8×10?9 M. The modified electrode shows good reproducibility and stability. In addition, the voltammetric behavior of other amino acids is explored. It is found that among them tryptophan (Trp) and histidine (His) can also produce sensitive anodic peak under same experimental conditions, and their detection limits are 4×10?9 M and 4×10?6 M, respectively.  相似文献   

11.
A novel analytical procedure for the determination of Pb(II) and Cd(II) in herbal medicines by differential pulse anodic stripping voltammetry (DPASV) on Nafion‐coated bismuth film electrode (NCBFE) was proposed and experimentally validated. Various experimental parameters, which influenced the response of the NCBFE to these metals in real samples, were optimized. The results showed that there were well‐defined peaks of Pb and Cd in herb samples at deposition potential of ?1.2 V and deposition time of 300 s. The analytical performance of the NCBFE was evaluated in the presence of dissolved oxygen, with the determination limits of 0.35 µg·L?1 for Pb and 0.72 µg·L?1 for Cd and recoveries of 87.8% –105.4% for Pb and 89.5% –108.5% for Cd obtained from different samples. The Pb and Cd concentrations in the studied samples have been also determined by graphite furnace atomic absorption spectrometry (GFAAS), suggesting that there was a satisfactory agreement between the two techniques, with relative errors lower than 6.5% in all cases. The great advantages of the proposed method over the spectroscopic method were characterized by its simplicity, selectivity and short analysis time, simultaneous analysis of different metals and cost‐efficiency.  相似文献   

12.
By exploiting the electrostatic interaction between positively charged 3,4‐ethylenedioxythiophene cation radicals and negatively charged sulfonated graphene (SG) sheets, we prepared a poly(3,4‐ethylenedioxythiophene)‐sulfonated graphene (SG‐PEDOT) composite film by a one‐step electrochemical process. The composite was further decorated with gold nanoparticles (AuNPs) and employed as an electrode material for the detection of L ‐cysteine (Cys). The SG‐PEDOT composite film is shown to provide a rough surface for the electrodeposition of AuNPs and to improve substrate accessibility and interaction with Cys. Moreover, the AuNPs‐decorated composite exhibits better electrocatalytic performance than that of a SG‐PEDOT composite only. Under optimum experimental conditions, the amperometric current of the sensor is linearly related to the concentration of Cys in the 0.1 to 382 µM range, and the detection limit is 0.02 µM (at S/N=3). The modified electrode displays favorable selectivity, good stability and high reproducibility. The method was successfully applied to the detection of Cys in spiked human urine.  相似文献   

13.
《Electroanalysis》2005,17(21):1952-1958
The performance of a poly(1,8‐diaminonaphthalene)‐modified electrode for the determination of the Se(IV) ion in an aqueous medium was investigated with anodic stripping voltammetry without the pretreating of the sample. The experimental parameters for the analysis of Se(IV) were optimized and the characteristics of this polymer‐modified electrode were investigated by using cyclic voltammetry. The Se(IV) ions were chemically deposited onto the surface of the pDAN‐Au electrode in an acidic medium. The detection limit employing the anodic stripping differential pulse voltammetry was 9.0×10?9 M for Se(IV) with 4.4 % of RSD. Satisfactory result for the determination of Se(IV) was acquired employing a certified standard urine reference material, SRM's 2670 (trace element in urine) with 4.1 ppb of SD.  相似文献   

14.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   

15.
《Electroanalysis》2005,17(20):1835-1840
An L ‐cysteine modified gold electrode for the determination of copper in the presence of various amounts of arsenic with anodic stripping voltammetry has been studied. The electrode was fabricated by immersing a gold electrode in an ethanol solution of 5mM L ‐cysteine for 60 min. Various parameters, such as the effect of different supporting electrolytes, the pH of the electrolyte and the deposition potential were investigated. Under optimum conditions, copper was accumulated at ?0.3 V (vs. SEC) for 60 s in 0.1 M phosphate buffer pH 5.0 in the presence of different amounts of arsenic. Essentially the same sensitivities (0.33±0.001 μA/μM) and limits of detection (0.13±0.002 μM) of copper were obtained with various amount of arsenic in the range 2 μM to 20 μM.  相似文献   

16.
《Electroanalysis》2004,16(21):1745-1754
This works reports the use of adsorptive stripping voltammetry (AdSV) for the trace determination of chromium on a rotating‐disk bismuth‐film electrode (BFE). During the reductive accumulation step, all the chromium species in the sample were reduced to Cr(III) which was complexed with cupferron and the complex was accumulated by adsorption on the surface of a preplated BFE. The stripping step was carried out by using a square‐wave (SW) potential‐time voltammetric signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements in the presence of dissolved oxygen. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3σ limit of detection for chromium was 100 ng L?1 (for 120 s of preconcentration) and the relative standard deviation was 3.6% at the 2 μg L?1 level (n=8). Finally, the method was applied to the determination of chromium in real samples with satisfactory results.  相似文献   

17.
《Electroanalysis》2018,30(9):2004-2010
The performance of screen‐printed electrodes modified in situ with tellurium film for the anodic stripping voltammetric (ASV) determination of Cu(II) is reported. It was found that two types of screen‐printed substrates, namely carbon and mesoporous carbon, were optimal for this application. The selected in situ tellurium film modified electrodes were applied for the square wave ASV determination of copper at μg L−1 concentration levels. Well‐defined and reproducible Cu oxidation stripping peaks were produced at a potential more negative than the anodic dissolution of tellurium. The highest sensitivity of Cu determination was achieved in 0.05 M HCl containing 50 μg L−1 Te(IV) after 300 s of accumulation at −0.5 V. Using the optimized procedure, a linear range from 2 to 35 μg L−1 of Cu(II) was obtained with a detection limit of 0.5 μg L−1 Cu(II) (S/N=3) for 300 s of deposition time. Both sensors, carbon TeF‐SPE and mesoporous carbon TeF‐SPE, were successfully applied for the quantification of Cu in a certified reference surface water sample.  相似文献   

18.
A novel amperometric immunosensor based on L ‐cysteine/nanosized Prussian blue bilayer films ({NPB/L ‐cys}2) and gold nanoparticles (nano‐Au) was fabricated for determination of human chorionic gonadotrophin (HCG). First, L ‐cys and NPB was self‐assembled by layer‐by‐layer (LBL) technology to form {NPB/L ‐cys}2 bilayer films on the gold electrode. Subsequently, nano‐Au layer was immobilized on the {NPB/L ‐cys}2 bilayer films by electrodepositing gold chloride tetrahydrate and then anti‐HCG was assembly on the nano‐Au layer. Finally hemoglobin (Hb) was employed to block sites against nonspecific binding. With the electrocatalytic ability of Hb and NPB for the reduction of H2O2, the current signal of the antigen‐antibody reaction was amplified and the enhanced sensitivity was achieved. In this study, the assembly process and performance of the immunosensor were characterized by cyclic voltammetry (CV) and the morphology was researched by scanning electron microscopy (SEM). The immunosensor performed a high sensitivity and a wide linear response to HCG in two ranges from 0.5 to 10 mIU/mL and from 10 to 200 mIU/mL with a relatively low detection limit of 0.2 mIU/mL at 3 times the background noise, as well as good stability and long‐term life.  相似文献   

19.
《Electroanalysis》2004,16(20):1717-1722
A rational strategy for the construction of a bioelectrocatalytic architecture by means of alternate electrostatic adsorption is described. Multilayer films containing glucose oxidase (GOx) and different polyelectrolytes were assembled onto a thiolated‐gold surface and the resulting bioelectrode was used for glucose biosensing. The supramolecular multistructure was prepared by assembling polyethylenimine and Nafion (as anti‐interference barrier), followed by the adsorption of polyethylenimine and DNA (as stabilizing film) and finally by the alternate deposition of polyethylenimine and glucose oxidase (as a biocatalytic layer). The influence of the deposition time and concentration of polyelectrolytes, organization and number of layers on the sensitivity and selectivity of the bioelectrode is discussed. The resulting enzymatic biorecognition layer exhibits very good analytical performance with a fast, sensitive (3.3±0.1)×104 nA M?1 and highly selective (0% interference for 6.0 mg % uric acid and 2.0×10?4 M ascorbic acid) response to glucose, demonstrating that the alternate electrostatic adsorption of conveniently selected polyelectrolytes allow a large improvement in the selectivity and sensitivity of a biosensor.  相似文献   

20.
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 mol L?1 NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi3+ and Pb2+ ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury‐coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5 % RSD) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号