首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.  相似文献   

2.
The assessment of an expanded graphite‐Ag‐zeolite‐epoxy composite (EG‐Z‐Ag‐Epoxy) electrode for the determination of 4‐chlorophenol (4‐CP) is described and compared to the corresponding expanded graphite‐epoxy composite (EG‐Epoxy) electrode. Cyclic voltammetry was used to characterize the electrochemical behavior and determination of 4‐CP at both electrodes in 0.1 M Na2SO4 and 0.1 M NaOH supporting electrolytes. A substantial enhancement of sensitivity for the determination of 4‐CP at the EG‐Z‐Ag‐Epoxy electrode was reached by applying a chemical preconcentration step prior to voltammetric quantification. Also, under these last conditions the lowest limit of detection of 1 μM illustrates the analytical versatility of this electrode in a concentration range where aquatic 4‐chlorophenol pollution is known to occur.  相似文献   

3.
Principles and practical application of combinatorial electrochemistry in search for new electroactive materials in electroanalysis have been explored. Nanoparticles of three different metals: silver, gold and palladium have been independently synthesized on the glassy carbon spherical powder surface by electroless deposition process and characterized using both spectroscopic and electrochemical techniques. These three materials were then combined together onto basal plane pyrolytic graphite electrode surface and the application of the combinatorial approach to find the electrode material for bromide detection as model target analyte was demonstrated. The component electroactive for bromide detection was next identified and it was found that silver nanoparticles were the active ones. A composite electrode based on silver nanoparticle modified glassy carbon powder and epoxy resin was then fabricated and it was found to allow accurate determination of bromide. The electroactivity for the bromide determination of the composite electrode was compared with that of a bulk silver electrode and it was shown that the composite electrode is very efficient with a comparable electroactivity with only a portion of precious metals being used for its construction.  相似文献   

4.
Abstract

Results obtained in this laboratory and elsewhere suggest that carbon composite electrodes may possess a signal-to-noise (S/N) advantage compared to continuous electrodes such as glassy carbon when used for detection of analytes in flowing streams. One succomposite electrode which appears partic- ularly attractive in this regard is the Kel-F-graphite (Kelgraf) electrode, compression molded from Kel-F and powdered graphite and containing 5 to 30% graphite by weight. Studies of the electrode surface by scanning electron microscopy and X-ray photoelectron spectroscopy in conjunction with electrochemical investigations employing chronoamperometry, cyclic voltammetry, and capacitance measurements have led us to view the electrode surface as an ensemble of rnicroelectrodes, the dimensions of which can be varied by changes in particle size and/or ratio of Kel-F to graphite in the composite. The S/N advantage of the composite electrode apparently arises from a signal (current) enhanced by radial diffusion of analyte to the individual microelectrodes, resulting in a response greater than that obtained from a continuous electrode of equal active area. Since detector noise is generally assumed proportional to the active area of the electrode, S/N enhancement results.

For composite electrodes employed in a thin-layer channel design LC detector, the observed variations in the S/N ratio with changes in (1) composite composition (%C), (2) particle size of Kel-F used in fabrication of the composite, and (3) area of composite exposed in the flow channel are discussed within the context of the microelectrode ensemble model. It is further demonstrated that the ability of the electrode to resist fouling can be modified by variation in composite composition.  相似文献   

5.
《Electroanalysis》2006,18(10):1028-1034
This paper presents a comparative study on the electrochemical behavior of the flavonoid rutin on a rigid carbon‐polyurethane composite electrode and on a glassy carbon electrode. The electrochemical oxidation reaction of rutin was found to be quasireversible and affected by adsorption on the electrode surface. A square‐wave voltammetric method was developed for determination of rutin in green tea infusion samples using the RCPE electrode and data treatment by a deconvolution procedure. The detection limit achieved in buffered solutions was 7.1×10?9 mol L?1 using the RCPE and 1.7×10?8 mol L?1 using the GC electrode the average reproducibility for five determinations being 3.5%.  相似文献   

6.
Wang J  Chen G  Wang M  Chatrathi MP 《The Analyst》2004,129(6):512-515
The preparation of carbon nanotube (CNT)/copper composite electrodes, based on co-mixing CNT and Cu powders within mineral oil, is described. The new composite electrode is used for improved amperometric detection of carbohydrates following their capillary electrophoresis (CE) microchip separations. The CNT/Cu composite electrode detector displays enhanced sensitivity compared to detectors based on copper or CNT alone. The marked catalytic action of the CNT/Cu composite material permits effective low potential (+0.5 V vs. Ag/AgCl) amperometric detection, and is coupled to the renewability, bulk modification and versatility advantages of composite electrodes. The CNT/Cu composite surface also leads to a greater resistance to surface fouling compared to that observed at the copper electrode. Factors affecting the electrocatalytic activity and the CE microchip detection are examined and optimized. The CNT/Cu composite electrode is also shown to be useful for the detection of amino acids as indicated from preliminary results. While the present work has focused on the enhanced CE microchip detection of carbohydrates and amino acids, the CNT/metal-composite electrode route should benefit the detection of other important groups of analytes.  相似文献   

7.
Shin D  Tryk DA  Fujishima A  Muck A  Chen G  Wang J 《Electrophoresis》2004,25(17):3017-3023
The attractive features of a boron-doped diamond (BDD) thin-film detector for microchip capillary electrophoretic (CE) separations of dye-related amino-substituted aromatic compounds are described. The diamond electrode was employed in the end-column amperometric detection of 4-aminophenol (4-AP), 1,2-phenylenediamine (1,2-PDA), 2-aminonaphthalene (2-AN), 2-chloroaniline (2-CA), and o-aminobenzoic acid (o-ABA), and its attractive behavior was compared to commonly used screen-printed carbon and glassy-carbon electrodes. These conventional electrode materials exhibit a significant degree of passivation and low sensitivity to the above-mentioned environmental pollutants. The diamond-based electrochemical detection system displayed a favorable analytical performance, including lower noise levels, higher peak resolution with enhanced sensitivity, and improved resistance against electrode passivation. Factors influencing the on-chip analysis were assessed and optimized. The diamond detector displayed detection limits of 2.0 and 1.3 microM for 4-AP and 2-AN, respectively, and a wide linear response for these compounds over the 2-50 microM range. The enhanced stability was demonstrated by relative standard deviation (RSD) values of 1.4% and 4.7% for 100 microM 1,2-PDA and 200 microM 2-CA, respectively, for repetitive detections (n = 7). Besides, the simultaneously observed current decrease was 2.4 and 9.1% for 1,2-PDA and 2-CA, respectively (compared to 21.8 and 41.0% at the screen-printed carbon electrode and 28.3 and 34.1% at the glassy carbon electrode, respectively). The favorable properties of the diamond electrode indicate great promise for environmental applications in CE and other microchip devices.  相似文献   

8.
The combinatorial screening of different metallic nanoparticles as electrocatalysts was investigated and efficiently applied for the detection of hydrazine. In a first step, glassy carbon microspheres decorated with metallic nanoparticles (Au, Pd, and Ag) were abrasively attached on the surface of a basal plane pyrolytic electrode giving a ‘multi–metal’ nanoarray. In a second step, electrodes modified with only one type of metallic nanoparticles allowed the identification of Pd as the unique catalytic material. In addition, a carbon‐epoxy composite electrode loaded with the Pd nanoparticles was then constructed for a practical use. The carbon‐epoxy composite nanoarray electrode was found to have excellent characteristics as for the sensing of hydrazine with a limit of detection of 2 μM.  相似文献   

9.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

10.
《Electroanalysis》2006,18(17):1727-1729
A new polyvinyl chloride (PVC)/tetrathiafulvalene‐tetracyanoquinodimethane (TTF‐TCNQ) composite electrode was prepared and tested for electroanalytical performance. Different PVC/TTF‐TCNQ–graphite proportions were used in order to obtain the best possible detector for accommodation in a wall‐jet electrochemical cell of use in flow injection analysis. A PVC/TTF‐TCNQ w/w ratio of 1/10 provided the best results in terms of sensitivity, coefficients of variation and mechanical resistance. The voltammetric and flow‐injection amperometric detection responses of the electrode to ascorbic acid (AA) were measured and compared with those of a PVC–graphite electrode. The resulting electrode provided good electrode kinetics with a low background current and a relatively reproducible signal. In addition, the electrode can be readily prepared and its surface readily renewed.  相似文献   

11.
Pyrolytic carbon films (PCFs) were prepared by chemical vapor deposition (CVD) at different deposition temperatures. As an example of using PCF electrode in electroanalysis, the direct electrooxidation of ascorbic acid (AA) at the PCF electrode was investigated and compared with common carbon‐based electrodes such as glassy carbon (GC), edge plane pyrolytic graphite (EPPG), and basal plane pyrolytic graphite (BPPG) electrodes. It was found that the PCF electrodes prepared under deposition temperatures higher than 1050 °C showed a higher sensitivity and lower overpotential compared to the other carbon electrodes. The electrode was successfully applied for determination of AA in real samples.  相似文献   

12.
A new method for mass fabrication of silver ink conductivity detector electrodes for poly(methylmethacrylate) (PMMA) microchip electrophoretic systems has been developed based on screen‐printing technology. Printing of silver conductivity electrodes was performed through a patterned stencil on thin PMMA sheets. Following the electrode fabrication, the PMMA sheets are cut into cover sheets, and are aligned and sealed to the channel plate thus establishing a complete microchip separation device. The effects of the electrode width and spacing on the response and resolution have been investigated and the optimized electrode performance was compared to commonly used aluminum electrodes in the determination of ammonium, methyl ammonium, and sodium. The utility of the screen‐printed contactless conductivity detector (SPCCD) electrodes is further demonstrated for the separation and detection of organic acids with excellent reproducibility (RSD values of 3.7% and 4.1% for oxalate and tartrate, respectively). The thick‐film fabrication of the electrode material demonstrates the ability to mass‐fabricate detection devices with total process of device fabrication requiring less than 4 h (including the fabrication of channel plate, cover sheet with the electrodes, and subsequent bonding). The fabrication method described here is convenient and does not compromise the detector performance, hence offers great promise for producing single use field deployable analytical microsystems.  相似文献   

13.
A different molecularly imprinted composite film with the exploit of computational design is synthesized. The proposed composite is used for electrode modification to determine morphine. The ratio of monomer to template in optimum condition was obtained 4. The modification of the electrode was achieved by electropolymerizing L‐lysine in the presence of morphine on the surface of sodium alginate and activated carbon (SA‐AC) on glassy carbon electrode (GCE). The SA‐AC composite with special surface area suits for making sensitive sensors. Morphine showed an anodic peak in buffer solution of phosphate (pH=6.0) on MIP/SA‐AC/GCE. The optimization of the practical factors on the response and electrochemical behavior of template morphine on the modified electrode were precisely surveyed. The DPV outcomes exhibit high sensitivity for morphine detection within 0.1–1000.0 μM and limit of detection as 48 nM (S/N=3). The application of this disposable sensor in the case of urine samples was quite satisfactory.  相似文献   

14.
《Electroanalysis》2006,18(5):449-455
The direct electrochemical oxidation of ammonia in propylene carbonate is reported for the first time. The voltammetric responses at glassy carbon, boron‐doped diamond, edge and basal plane pyrolytic graphite electrodes are explored and compared with the outcome indicating that the optimum electrode substrate for analytical purposes in this solvent is glassy carbon. Proof‐of‐concept is shown for the amperometric detection of ammonia using basal plane pyrolytic graphite electrodes abrasively modified with glassy carbon spheres. Given the significantly lower vapor pressure of propylene carbonate in comparison to water the implications for extending the life‐time of practical sensors are evident. Propylene carbonate shows a wide potential window with glassy carbon electrodes permitting this approach to be used for a potential diversity of gaseous analytes.  相似文献   

15.
《Electroanalysis》2005,17(8):655-661
The first examples of using edge plane pyrolytic graphite electrodes for anodic and cathodic stripping voltammetry (ASV and CSV) are presented, notably the ASV of silver and the CSV of manganese. In the former example, detection limits for silver (based on 3σ) of 8.1 nM and 0.185 nM for 120 s and 300 s accumulation time, respectively, were achievable using the edge plane electrode, which were superior to those observed on glassy carbon, basal plane pyrolytic graphite and boron‐doped diamond electrodes. In the second example, a detection limit for manganese of 0.3 μM was possible which was comparable with that achievable with a boron‐doped diamond electrode but with an increased sensitivity. Comparison of the edge plane pyrolytic graphite electrode with boron‐doped diamond electrodes reveals that the edge plane electrode has comparable detection limits and sensitivities whilst exhibiting a lower signal‐to‐noise ratio and large potential window for use in trace analysis suggesting boron‐doped diamond can be conveniently replaced by edge plane pyrolytic graphite as an electrode material in many applications.  相似文献   

16.
《Electroanalysis》2017,29(3):756-764
Direct electro‐oxidation of famotidine at different graphitic carbon‐based electrode materials was evaluated. These materials included conventional electrodes of edge‐plane pyrolytic graphite, basal‐plane pyrolytic graphite, carbon paste, and glassy carbon as well as nano‐structured carbon‐based materials such as pyrolytic carbon film, carbon nanotube, and nano‐graphene. Raman spectroscopy and scanning electron microscopy were employed to analyze their structural and morphological features. It was found that the pyrolytic carbon film electrode, after a simple and fast anodic activation, shows superior electroanalytical performance. The method was successfully applied for the electroanalytical determination of famotidine in tablet dosage forms and urine samples.  相似文献   

17.
A novel amperometric sensor based on a rigid graphite‐epoxy composite of which composition is near to the percolation is reported. The electrochemical response of the novel transducer material was evaluated in terms of reproducibility of the fabrication process and reproducibility and repeatability of the analytical signal. The signal to noise ratio was improved. atomic force microscopy (AFM) technique was used to obtain qualitatively information. Amperometric detection of chlorine in water was carried on at a set potential of ?250 mV vs. Ag/AgCl. The developed flow injection analysis (FIA) system responded linearly to chlorine concentration between 0.15 mg L?1 and 4 mg L?1with a sensitivity of ?0.20 μA L mg?1. The proposed system was applied to real samples from swimming‐pool water. No significant difference was observed regarding the standard method.  相似文献   

18.
A glassy carbon electrode (GCE) was modified with nanopeapods formed by ferrocene filled single‐walled carbon nanotubes (Fc@SWNTs). The modified electrode showed bi‐directional electrocatalysis toward dopamine (DA), which suggested a synergistic effect of ferrocene and carbon nanotubes. Bi‐directional detection of DA was realized based on the modified electrode.  相似文献   

19.
《Electroanalysis》2005,17(17):1517-1522
In this paper, we report the first attempt to use humic acid (HA) as modifiers to prepare the organic‐inorganic hybrid modified glassy carbon electrodes based on HA‐silica‐PVA (poly(vinyl alcohol)) sol‐gel composite. Electroactive species of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy) ) can easily incorporate into the HA‐silica‐PVA films to form Ru(bpy) modified electrodes. The amount of Ru(bpy) incorporated in the composite films strongly depends on the amount of HA in the hybrid sol. Electrochemical and electrogenerated chemiluminescence (ECL) of Ru(bpy) immobilized in HA‐silica composite films coated on a glassy carbon electrode have been studied with tripropylamine (TPA) as the coreactant. The analytical performance of this modified electrode was evaluated in a flow injection analysis (FIA) system with a homemade flow cell. The as‐prepared electrode showed good stability and high sensitivity. The detection limits (S/N=3) were 0.050 μmol L?1 for TPA and 0.20 μmol L?1 for oxalate, and the linear ranges were from 0.10 μmol L?1 to 1.0 mmol L?1 for TPA and from 1.0 μmol L?1 to 1.0 mmol L?1 for oxalate, respectively. The resulting electrodes were stable over two months.  相似文献   

20.
A new end-column ‘hybrid’ contactless conductivity detector for microchip capillary electrophoresis (CE) was developed. It is based on a “hybrid” arrangement where the receiving electrode is insulated by a thin layer of insulator and placed in the bulk solution of the detection reservoir of the chip, whereas the emitting electrode is in contact with the solution eluted from the channel outlet in a wall-jet arrangement. The favorable features of the new detector including the high sensitivity and low noise, can be attributed to both the direct contact of the ‘emitting’ electrode with the analyte solution as well as to the insulation of the detection electrode from the high DC currents in the electrophoretic circuit. Such arrangement provides a 10-fold sensitivity enhancement compared to currently used on-column contactless conductivity CE microchip detector as well as low values of noise and easy operation. The new design of the wall-jet conductivity detector was tested for separation of explosive-related methylammonium, ammonium, and sodium cations. The new detector design reconsiders the wall-jet arrangement for microchip conductivity detection in scope of improved peak symmetry, simplified study of inter-electrode distance, isolation of the electrodes, position of the wall-jet electrode to the separation channel, baseline stability and low limits of detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号