首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, pressure spectra have been derived from the authors’ model (Eur. J. Mech., B/Fluids 12 (1) (1993) 31–42) developed by means of rapid distortion theory (RDT) of homogeneous low Reynolds number turbulent shear flow subjected to weak rotation. The combined effects of uniform shear dU1/dx2 and weak rotation Ω3 on the evolution of pressure spectra have been examined in terms of the rotation number 2Ω3/(dU1/dx2). It is found that the system rotation exhibits the opposite effect on the pressure field as compared with the influence of rotation on the velocity fluctuations.  相似文献   

2.
Particle image velocimetry (PIV) was used to study air flow characteristics at the outlet of an automotive supercharger. Instantaneous velocity fields were analyzed to yield ensemble-averaged velocities and Reynolds stresses, and the ensemble-averages were used to determine maximum velocity and exit flow angle as a function of blade position for various speeds and pressure ratios. The results show that the flow exits the supercharger as a high-speed jet that not only varies in the parallel plane but also in the perpendicular plane, generating a complex three-dimensional flow. The flow varies in the magnitude and the angle at which it leaves the supercharger with the change in blade position and follows a periodic behavior. The maximum velocity at which the flow exits the supercharger also follows a periodic behavior with a variation of 25–30% observed for all the cases. In the parallel plane, the exit angles are periodic every 60° of blade rotation and vary by as much as 40°, whereas periodic behavior with every 120° of blade rotation and a variation of 60° is observed in the perpendicular plane. Variation in flow with blade position is also observed in the velocity and turbulence profiles, with periodic behavior with every 60° blade rotation. The velocity and velocity fluctuation profiles show that the unsteady nature of the flow is most significant close to the outlet, and these unsteady variations diminish 58 mm downstream of the outlet. An exit flow pattern of a Fig. 8 is generated as the flow leaves the blades with one complete blade rotation of 120° for all the cases, except 4000 rpm, pressure ratio 1.4, where the flow exits in a circular pattern.  相似文献   

3.
This paper experimentally investigated the effect of rotating on the turbulent boundary layer flow using hot-wire. The experiments were completed in a rotating rig with a vertical axis and four measured positions along the streamwise direction in channel, which focuses on the flow flied in the rotating channel. The rotating effects on velocity profile, wall shear stress and semi-logarithmic mean velocity profile are discussed in this paper. The results indicated that: due to the Coriolis force induced by rotating, the phenomenon of velocity deficit happens near the leading side. The velocity deficit near the leading side, do not increase monotonically with the increase of Ro. The trend of the velocity deficit near the leading side is also affected by the normal component of pressure gradient, which is another important force in the cross-section of the rotating channel. The wall shear stress near the trailing side is larger than that on the leading side, and the semi-logarithmic mean velocity profile is also different under rotating effects. The phenomenon reveals that the effect of rotation penetrates into the logarithm region, and the flow near the leading side tends to turn into laminar under the effect of rotation. The rotation correction of logarithmic law is performed in current work, which can be used in the wall function of CFD to increase the simulating accuracy at rotating conditions.  相似文献   

4.
The calculations of quasi‐three‐dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k–ε model equations. The flow characteristics were studied by varying rotation speed ω for 0?ω?167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (α) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25 :759–766). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
To develop objective constitutive equations, local frames which translate and rotate with the fluid particle can be used. For example, the corotating frame rotates such that the curl of the velocity calculated in this frame vanishes. From the corotating frame, the Jaumann derivative can be derived. In this paper, a new local frame is developed which causes the cross product of the velocity and acceleration to vanish and is designated as the rigid-rotating frame. The corotating and rigid-rotating frames rotate identically for a rigid-body rotation of the fluid, but rotate differently in flows that contain shearing. This difference in rotation can be used to develop an objective rotation tensor that can be applied to constitutive equations for viscoelastic liquids. The rigid-rotating frame can also be used to develop a rheological time derivative which has been designated the rigid-rotating derivative. These new quantities expand the traditional set of kinematical variables and invariants available for use in constitutive equations. Use of this expanded set of kinematic variables is demonstrated in limiting constitutive equations. Received: 1 March 1999 Accepted: 5 March 1999  相似文献   

6.
 The relative flows around a flat plate axial impeller in a mixing vessel were visualized directly using a combined image shifting and image de-rotation technique. The image shifting technique used a rotating mirror to produce a velocity bias equal to the blade velocity so that the relative flow field could be studied in a co-axial plane cutting through the 2-dimensional blade section. The technique provides a rapid means of locating local flow separation on the blade. To visualize the relative flow field in the plane of the blade span, an image de-rotation method was used. The method includes using a dove-shaped prism which, when rotated, produce a rotation of an image about the optical axis. It was observed in the relative frame of reference through the prism that a new vortex structure, not reported previously, with vorticity sign opposite to that of the rotation of the shaft, exists near the hub at the high pressure side of the blade. Received: 17 June 1996/Accepted:12 November 1996  相似文献   

7.
一种摩擦学状态在线监测系统的研究   总被引:2,自引:5,他引:2  
刘岩  姚智刚 《摩擦学学报》1998,18(4):341-345
研制了一种用于船用柴油机的摩擦学状态在线监测系统。它集磨粒监测,润滑油质量监测,柴油机扭矩及时转速监测于一体,利用在线铁谱技术监测润滑油中的铁磁性磨粒,利用容栅型电容传感器在线监测污染物引起的润滑油介电常数的变化,利用光电传感器和随轴转动齿盘产生的脉冲及相位差在线测量柴油机输出轴的扭矩及瞬时转速。此外,该监测系统还可将柴油机的磨损状态与动力状态相关联,监测由于各缸爆排压力变化造成的瞬时转速变化,从  相似文献   

8.
The super rotation here means that the majority of fluid inside a precessing sphere rotates around the precession axis with angular velocity larger than that of the precession rotation itself. This phenomenon observed experimentally and numerically is explained to be driven by a cooperative interplay between the Coriolis force, the pressure gradient and the spherical geometry in the boundary layer.  相似文献   

9.
超声珩磨作用下两空化泡动力学特性   总被引:1,自引:0,他引:1  
为了探讨超声珩磨作用下磨削区的空化机理,基于速度势叠加原理,考虑超声珩磨速度和珩磨压力,建立了磨削区两空化泡的动力学模型. 数值模拟了磨削区空化泡初始半径、两空化泡间距、超声声压幅值、珩磨压力、珩磨头转速对磨削区两空化泡动力学特性的影响. 研究表明,考虑两空化泡之间的相互作用时,要想获得良好的空化效果,可将两空化泡初始半径之比控制在3 倍以内;选择较高的超声波声压幅值与较低的珩磨压力,并且使超声波声压幅值与珩磨压力和液体静压力之差介于0.66~1.89MPa 之间;增大珩磨头转速空化泡溃灭也略有加速;通过试验测量材料表面粗糙度的方法间接验证了理论分析的合理性.   相似文献   

10.
An exact solution is obtained for the problem of steady-state viscous incompressible flow under a pressure difference in the gap between coaxial cylinders for the case where the inner cylinder rotates at a constant angular velocity. The solution differs from the classical Couette-Poiseuille result by the presence of radial mass transfer, which provides for interaction between the poloidal and azimuthal circulations. The flow rate is found to depend linearly on the angular velocity of rotation of the inner cylinder. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 71–77, September–October, 2007.  相似文献   

11.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


12.
An experimental study of the instability of a flow in an axially rotating pipe is performed by means of LDV and flow visualization technique. It is found that the axial velocity of the rotating pipe flow fluctuates like a sine wave at first, then its fluctuating pattern assumes a somewhat sawtooth wave form as a spiral wave appears, which is predicted by means of linear and nonlinear stability analysis. At a certain rotation rate, the amplitude of the velocity fluctuations amounts to 30% of the axial velocity. At the down-stream section, another fluctuating component appears in the velocity, which interferes with the initially appearing component, then the fluctuation becomes one with broad-band spectral components. There is a close analogy between this spectral evolution and that of a Taylor-Couette flow. Deformation of the velocity distribution is obtained from the velocity fluctuating pattern and its phase, and the structure of the spiral wave is considered. The strength, azimuthal wavenumber and angular velocity of the spiral wave obtained from the velocity data are confirmed by flow visualization. The change of pressure loss in the rotating pipe is compared with the case without rotation.  相似文献   

13.
It is shown that the core of a swirled helical flow can be described using a novel exact nonstationary solution of the hydrodynamic equations for a viscous incompressible fluid, which generalizes the rigid-body asymptotics for the Burgers and Sullivan vortices in the form of rigid-body rotation with a finite helicity. An estimate of the pressure fluctuations corresponding to this nonstationary vortex regime, which is proportional to the frequency of the swirled-jet core rotation as a rigid body and also depends on the parameters of the initial velocity field structure, is obtained. It is noted that this frequency may correspond to the frequency observed in the pressure fluctuation spectrum, which is almost proportional to the swirled flow rate in vortex acoustic emitters.  相似文献   

14.
Summary An investigation is presented of the flow of a viscous, conducting fluid between two plane walls, which rotate around a common axis towards each other. The flow is considered to be under the influence of a magnetic field, set up by a line-current along the axis of rotation.Under the assumption of low hydrodynamic and magnetic Reynolds-number, expressions are given for the velocity and the pressure gradient.At present at Brussels: Ecole Royale Militaire, Physique des Plasmas.  相似文献   

15.
The hypersonic flow of a laminar stream of viscous compressible gas past blunt axisyrametric bodies rotating about the longitudinal axis is considered. It is assumed that gas blows from the surface of the body. The solution of the problem is obtained by a finite-difference method in a wide range of Reynolds numbers and blowing and rotation parameters. Some results of the calculations characterizing the effect of the rotation on the velocity and temperature profiles across the shock layer, on the friction and heat transfer coefficients, and the shock wave separation are given for the neighborhood of the stagnation point. For large Reynolds numbers and strong blowing an analytic solution of the problem is found in an approximation of two inviscid layers separated by a contact surface. The calculations are made for the flow past a sphere and a paraboloid and it is shown that in the presence of rotation the maximum of the heat flux is shifted from the stagnation point onto the side surface of the body. The dependence of the pressure distribution, the heat flux, and the friction coefficient is investigated for cases of constant and variable blowing over the contour of the body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 106–114, January–February, 1986.  相似文献   

16.
This paper addresses the use of different slotted pores in rotating membrane emulsification technology. Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation. Increasing the membrane rotation speed decreased the droplet size, and the oil droplets produced were more uniform using slotted pores as compared to circular geometry. At a given rotation speed, the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity). The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity. At a given pore fluid velocity and rotation speed, pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores. This work indicates practical benefits in the use of slotted membranes over conventional methods.  相似文献   

17.
Grain shear flow in a rotating drum   总被引:2,自引:0,他引:2  
 In the present paper we report on the experimental activities carried out on a rotating drum partially filled with grains or glass beads. The experiments give information about rheology through velocity profiles and through the velocity covariance tensor structure. We used a LDV system to measure the velocity of the grains at several points along three vertical sections. The data were also used to obtain the grain volume concentration, with encouraging results. Instantaneous velocity data were elaborated in order to obtain velocity and pseudotemperature profiles for all the experiments; for a subset of the experiments a large set of data were elaborated to obtain the velocity covariance. The velocity covariance is not collinear with the rate of deformation tensor. An attempt to justify the rotation of the tensor axes as a consequence of the kinetically induced anisotropy and of some free surface perturbations slowly moving upstream was partially successful. Received: 23 April 1999 / Accepted: 15 July 2001  相似文献   

18.
This paper addresses the use of different slotted pores in rotating membrane emulsification technology.Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation.Increasing the membrane rotation speed decreased the droplet size,and the oil droplets produced were more uniform using slotted pores as compared to circular geometry.At a given rotation speed,the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity).The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity.At a given pore fluid velocity and rotation speed,pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores.This work indicates practical benefits in the use of slotted membranes over conventional methods.  相似文献   

19.
为了探讨超声珩磨作用下磨削区的空化机理,基于速度势叠加原理,考虑超声珩磨速度和珩磨压力,建立了磨削区两空化泡的动力学模型. 数值模拟了磨削区空化泡初始半径、两空化泡间距、超声声压幅值、珩磨压力、珩磨头转速对磨削区两空化泡动力学特性的影响. 研究表明,考虑两空化泡之间的相互作用时,要想获得良好的空化效果,可将两空化泡初始半径之比控制在3 倍以内;选择较高的超声波声压幅值与较低的珩磨压力,并且使超声波声压幅值与珩磨压力和液体静压力之差介于0.66~1.89MPa 之间;增大珩磨头转速空化泡溃灭也略有加速;通过试验测量材料表面粗糙度的方法间接验证了理论分析的合理性.  相似文献   

20.
The Q2/P1, P/P1, P2/P0 and Q1/P0 velocity–pressure mixed elements are extended to the stress–velocity–pressure formulation, using the same interpolants for stress and velocity, and tested in the 4-to-1 contraction problem for Stokes flow. The comparison shows significant differences among them, which are not present when the velocity–pressure formulation is used. To provide a better understanding of the phenomenon, several variants of the previous elements are introduced, obtained by either changing the pressure space or by enriching the stress space with bubble functions. The formulation exhibits a strong sensitivity to the first alternative, while the second produces only a minor effect. These observations are confirmed by a convergence test effected on a regular problem with the explicit analytical solution. Also, as a result of the whole comparison, the P/P/P1 element looks promising for three-field calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号