首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The air-stable di-copper(I) complexes Cu2L(SCN)2 (1) and Cu2L(SCN)1.86I0.14 (2) of the N4 macrocyclic Schiff base ligand L have been synthesized and characterized by IR, elemental analysis, UV-Vis and crystal structure determination. X-ray analysis of the complexes shows an approximate distorted trigonal planar geometry around each copper(I) ion that is constructed from one N-bonded thiocyanate (or iodide in 2) group and two imine nitrogen atoms. DFT calculations were used to determine the structural features of the Cu2L(SCN)2 complex, and these were consistent with the experimental data for the complex.  相似文献   

2.
Summary Reaction of 1,3-thiazolidine-2-thione and copper(II) chloride and bromide in MeOH yields CuL3X complexes. These react with an excess of copper(II) halide to give CuL2X complexes. From their i.r. spectra, all the complexes seem to be S-bonded to the metal. Thev(CuCl) vibration is identified at 236 cm–1.  相似文献   

3.
4.
Utilizing a new 20-membered macrocyclic Schiff base ligand with two coordination sites formed from the [2+2] condensation of 1,3-diaminopropane and benzene-1,3-dicarboxaldehyde in the presence of CuX (X = Cl, Br, I) salts, air-stable dicopper(I) complexes were synthesized in acetonitrile, intramolecularly linked via two halide groups, and characterized by different physico-chemical techniques. The single crystal X-ray diffraction technique indicates these complexes consist of two N2X2 donor sets that have distorted tetrahedral coordination environments around the copper(I) ions. In these halogen-bridged binuclear Cu2LX2 systems the Cu?Cu separation can be controlled, as this distance is reduced on increasing the halide size and hence the X?X repulsion, with the rigidity of the macrocycle playing a significant role.  相似文献   

5.
This paper reports the synthesis of a series of methylpyruvate thiosemicarbazone derivatives containing, on the terminal nitrogen, substituents of different nature and size and namely, ethyl, phenyl and methylphenyl. These ligands were reacted with bis(triphenylphosphine)copper(I) nitrate and acetate to produce the respective complexes: [Cu(PPh3)2(Et-Hmpt)]2(NO3)2 (1), [Cu(PPh3)2(Ph-Hmpt)]NO3 (2), [Cu(PPh3)2(MePh-Hmpt)]NO3 (3), [Cu2(O2CCH3)(Et-pt)(PPh3)2] · H2O (4), [Cu(Ph-mpt)(PPh3)] (5) and [Cu2(MePh-mpt)2(PPh3)2] (6). All of them were characterized by elemental analysis, IR, 1H NMR, EPR spectroscopy and, for compounds 1, 2, 4, and 6, by X-ray crystallography. The characterization revealed that the coordinating behaviour of the ligands is influenced by a series of factors, predominant among which is the hard soft nature of the atoms involved in the interactions with the metal centre. The complexes obtained from the nitrate copper(I) salt are formed by cationic molecules with a nitrate as a counterion, while those derived from the acetate salt present deprotonated ligands and a few unexpected features. In particular, one of the compounds (4) is a mixed valence dinuclear complex with an acetate oxygen and the thiosemicarbazone sulfur acting as bridging between the two Cu(I) and Cu(II) ions. Another one (6) presents instead a Cu(I)–Cu(I) sulfur bridged binuclear cluster.  相似文献   

6.
Reactions of equimolar solutions of copper(I) halides with 1-methyl-1,3-imidazoline-2-thione (SC4H6N2) in acetonitrile have yielded a trinuclear complex, {Cu31-Br)3(μ-SC4H6N2)3} · CH3CN 1, and 1D polymer, {Cu2(μ-I)2(μ-SC4H6N2)2}n2. The thio-ligands/halogens adopt μ-S, η1-X or μ-X modes. There is weak interaction between trinuclear units {Cu···Br, 3.025 Å} and Cu···Cu contacts lie in the range, 2.974(2)–3.650(2) Å. Polymer 2 has alternating Cu2I2 and Cu2S2 cores involving sulfur/iodine bridging in a twisted ribbon type arrangement with short Cu···Cu distances {2.6912(9) and 2.785(9) Å}, respectively. The polynuclear complexes in dimethyl sulfoxide exhibit intense fluorescent bands {λem = 319 (1) and 322 (2)}.  相似文献   

7.
Xie  Yongshu  Ni  Jia  Liu  Xueting  Liu  Qingliang  Xu  Xiaolong  Du  Chenxia  Zhu  Yu 《Transition Metal Chemistry》2003,28(3):367-370
Novel 1:2 and 1:1 (M:L) copper(II) complexes have been prepared from the tridentate ligand 2-(1-methyl-2-aza-5-oxapentyl)phenol (H2L1). The crystal structure of [Cu(HL1)2] (1) exhibits a noncentrosymmetric square-planar geometry with a slightly tetrahedral distortion. The CuII atom is coordinated by two amino N and two phenoxo O atoms of two (HL1) ligands. The phenoxo and the alkoxy groups are involved in two strong intramolecular hydrogen bonds. The coordination moieties are further connected to a 1D linear structure by the action of intermolecular hydrogen bonds between the alkoxyl and the amino groups. The importance of steric hindrance introduced by the methyl group in the molecular structure and the packing of the complex molecules has been demonstrated. The e.p.r. parameters of (1) have been obtained: g = 2.231, g = 2.005, g iso = 2.080, A = 185.0 G, A iso = 86.5 G, A = (3A isoA )/2 = 37.3 G. These results confirm a distorted square planar stereochemistry with a ( )1 ground state.  相似文献   

8.
9.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

10.
Summary The crystal structure of the title compound has been determined from x-ray diffractometer data by the heavy-atom method and refined anisotropically by least-squares calculations. Crystals are monoclinic, space groupP 21/c, with unit cell dimensions:a=7.321(1),b=14.622(2),c=14.827(2) Å,=92.95(2), Z=4. The finalR index is 4.6%. The copper coordination is trigonal, involving the sulphur atoms of twoN-ethyl-1,3-imidazolidine-2-thione molecules and one chlorine atom. The structure is held together by two intramolecular N-HCl hydrogen bonds and by normal van der Waals interactions.  相似文献   

11.
Solution reactions of silver(I), copper(I), cadmium(II) and zinc(II) salts with 1,3-imidazolidine-2-thione (imdt) under diverse conditions yielded four complexes: [Cd(SC3H6N2)2(Ac)2] (1), [Zn(SC3H6N2)2(Ac)2] (2), [Cu2(SC3H6N2)6]SO4 (3) and [Ag2(SC3H6N2)6]SO4 (4). Complexes 1 and 2 are 1D and 2D hydrogen-bond aggregations. Complexes 3 and 4 are isostructural 3D hydrogen-bond networks. The diverse coordination modes of imdt and different anions are the major factors for three distinct hydrogen-bond structures.  相似文献   

12.
Näther C  Jess I 《Inorganic chemistry》2003,42(9):2968-2976
A second modification of the literature-known copper(I) coordination polymer CuCl(pyridazine) was prepared by the reaction of CuCl with pyridazine in acetonitrile. The crystal structure of catena[CuCl(mu(2)-pyridazine-N,N)] is built up of CuCl chains of which each two are connected by the pyridazine ligands to form double chains that are directed parallel to the crystallographic a-axis. In the literature known form LI (CuCl)(2) dimers occur that are connected to chains by the pyridazine ligand. On heating, compound I and LI lose half of the pyridazine ligands and transform to the new 2:1 coordination polymer poly[(CuCl)(2)(pyridazine-N,N)] (II), which transforms at higher temperatures to CuCl. The crystal structure of II is composed of discrete CuCl tetra-chains that are linked by the pyridazine ligands to sheets parallel to (010). The same thermal reactivity is found for the literature-known compound CuBr(pyridazine) (LII), which is isotypic to LI. On heating LII a transformation into the new 2:1 compound poly[(CuBr)(2)(pyridazine-N,N)] (III) is observed, which is isotypic to II. The thermal reactivity of all compounds and the transformation behavior as well as the range of thermodynamic stability of the dimorphic modifications were studied using DTA-TG-MS and DSC measurements, temperature dependent X-ray powder investigations, and crystallization experiments.  相似文献   

13.
He  Yi  Kou  Hui-Zhong  Wang  Ru-Ji  Li  Yadong  Xiong  Ming 《Transition Metal Chemistry》2003,28(4):464-467
Two new CuII complexes, [Cu(Hambi)2(ClO4)2] and [Cu(Hambi)2(dca)2] (Hambi = 2-aminomethylbenzimidazole) have been prepared and characterized by X-ray diffraction, electronic paramagnetic resonance (e.p.r.) and i.r. analyses. Both complexes exhibit an elongated octahedral coordination environment with two Hambi ligands situated at the equatorial positions in a trans fashion [Cu—N bond distances range from 1.940(9) to 2.031(9) Å]. In the second complex, a new coordination mode, in which dicyanamide coordinates to copper(II) as a monodentate ligand with the amide nitrogen atom, was observed.  相似文献   

14.
Three copper(I) halide complexes containing N-methylbenzothiazole-2-thione (mbtt) and triphenylphosphine (PPh3) have been prepared and structurally characterized by X-ray single-crystal analysis. Copper(I) halide precursors [CuΧ(PPh3)]4 (X = Cl, Br, I) react with mbtt in 1 : 4 M ratio to give complexes of formula [CuΧ(mbtt)(PPh3)]2. Hereby, dimerization is achieved in case of copper(I) chloride and bromide via halide bridges, while copper(I) iodide gives the binuclear thione-S-bridged dimer. The new complexes show moderate in vitro antibacterial activity against certain bacterial strains. The interaction of the compounds with calf-thymus DNA was monitored via UV–vis spectroscopy, DNA-viscosity measurements and their competition with ethidium bromide for the DNA intercalation sites studied by fluorescence emission spectroscopy. Intercalation was revealed as the probable mode of binding.  相似文献   

15.
16.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

17.
A series of Cu(II) carboxylate complexes (carboxylate?=?2-fluorobenzoic acid (2-HFBA) or 4-fluorobenzoic acid (4-HFBA)) containing either one chelating 1,10-phenanthroline (phen) or 2,2′-bipyridine (bipy) have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, and thermal analyses. In [Cu(bipy)(H2O)(2-FBA)2] (1), [Cu(bipy)(H2O)(4-FBA)2] (3), and [Cu(phen)(H2O)(2-FBA)2] (4), Cu is five-coordinate in a square pyramidal geometry and four-coordinate in [Cu(phen)(2-FBA)2] (2). The four complexes are extended into 1-D chains through hydrogen-bonding and π?···?π interactions in 1 and 4, only hydrogen-bonding in 2, and π?···?π interactions in 3. These contacts lead to aggregation and supramolecular self-assembly.  相似文献   

18.
Polynuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) and iodide ligands, [Cu(2)(dcpm)(2)(CH(3)CN)(2)](BF(4))(2) (1), [Cu(2)(dcpm)(2)](BF(4))(2) (2), [(CuI)(3)(dcpm)(2)] (3), [(CuI)(4)(dcpm)(2)] (4), and [(CuI)(2)(dcpm)(2)] (5) were prepared and their structures determined by X-ray crystal analysis. The shortest Cu--Cu distance found in these complexes is 2.475(1) A for 3. Powdered samples of 1, 3, 4, and 5 display intense and long-lived phosphorescence with lambda(max) at 460, 626, 590, and 456 nm and emission quantum yields of 0.26, 0.11, 0.12, and 0.56 at room temperature, respectively. In the solid state, 2 displays both a weak emission at 377 and an intense one at 474 nm with an overall emission yield 0.42. The difference in emission properties among complexes 1-5 suggests that both Cu--Cu interaction and coordination around the copper(I) center affect the excited state properties. A degassed solution of 2 in acetone gives a bright red emission with lambda(max) at 625 nm at room temperature. The difference absorption spectra of the triplet excited states of 1-5 in acetonitrile show broad absorption peaks at 340-410 and 850-870 nm.  相似文献   

19.
Reactions of malonic acid (H2mal) with PrCl3·6H2O afforded the known complex [Pr2(mal)3(H2O)6]n (1), and compounds [Pr2(mal)3(H2O)6]n·2nH2O (2·2nH2O), [PrCl(mal)(H2O)3]n·0.5nH2O (3·0.5nH2O) and [Pr(mal)(Hmal)(H2O)3]n·nH2O (4·nH2O) using various reaction ratios, reaction media (H2O, MeOH) and pH values. Analogous reactions with CeCl3·7H2O afforded compounds [Ce2(mal)3(H2O)6]n (5), [CeCl(mal)(H2O)3]n·nH2O (6·nH2O) and [Ce(mal)(Hmal)(H2O)3]n·nH2O (7·nH2O). Compounds 2·2nH2O and 3·0.5nH2O were characterized by X-ray crystallography, and 47 by microanalytical and spectroscopic data. The malonate(-2) ligand adopts three different coordination modes in the structures of 13, i.e., the μ2OO′:κO″ and the μ42OO′:κ2O″:κO? in 1 and 2 leading to a 3D network structure, and the μ32OO′:κ2O″:κO? in 3 promoting an 1D structure. The thermal decomposition of 1 and 3·0.5nH2O was monitored by TG/DTA and TG/DTG measurements. The structural features of 13 are discussed in terms of known malonato(-2) LnIII and CaII complexes. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号