首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A new method of high resolution cavity ringdown spectroscopy (CRDS) was recently developed in our laboratory, where a narrow line, continuous wave (CW) single-frequency laser is used instead of a pulsed laser. Here, we will first discuss the main differences between the `traditional' pulsed CRDS and CW-CRDS. Then, we will describe our results exploiting the high intracavity power that can be achieved with CW-CRDS. Using a single-mode Ti:Sa laser, we obtained CRDS spectra where the excitation power of a single cavity mode is close to 20 W. In the virtually collisionless regime of a supersonic slit jet, we observed saturation in some of the weak rovibronic transitions of NO2 around 796 nm, as evidenced by loss of absorption intensity and formation of Doppler-free Lamb dips. In addition, in coincidence with absorption by these near infrared transitions, an appreciable fluorescence signal was detected in the visible range. According to our interpretation, this fluorescence is from NO2 levels excited by two photons in a stepwise incoherent process, with a strongly allowed second step. Since the fluorescence spectrum has the same lineshapes as the CRDS absorption spectrum, it seems that the first transition step is the one limiting the overall two-step process. In addition, we also observed very narrow fluorescence features, not coincident with any absorption feature. These must be coherent (non-stepwise), Doppler-free, two-photon transitions. Interesting new questions arise from these preliminary data, and we believe that more measurements of this kind will provide new information about the rovibronic states of NO2 in the dissociation region.  相似文献   

2.
Diode laser cavity ring down spectroscopy   总被引:2,自引:0,他引:2  
We recently demonstrated how in cativy ring down spectroscopy (CRDS) a CW single frequency dye laser may be conveniently employed in place of the pulsed laser of standard CRDS. Here we extend this result to external cavity tunable diode lasers. Compact spectroscopic devices with extreme sensitivity (2 × 10−10/cm) become a reality. To demonstrate the instrumental resolution we obtained high quality NO2 spectra in a supersonic slit jet, with a residual Doppler width of about 250 MHz.  相似文献   

3.
A continuous wave distributed feedback diode laser operating in the near infrared at wavelengths close to 1650 nm has been used to measure the extinction of light by single aerosol particles. The technique of optical feedback cavity ring-down spectroscopy (CRDS) was used for measurement of CRDS events at a repetition rate of 1.25 kHz. This very high repetition rate enabled multiple measurements of the extinction of light by single aerosol particles for the first time and demonstrated the dependence of light scattering on the position of a particle within the laser beam. A model is proposed to explain quantitatively this phenomenon. The minimum detectable dimensionless extinction coefficient epsilonmin was determined to be 3x10(-6). Extinction values obtained for single spherical polymer beads from a monodisperse sample of particles of diameter of 4 microm are in near-quantitative agreement with the values calculated by the Mie scattering theory. The deviations from the Mie theory expected for measurement of extinction by CRDS using a continuous wave laser are discussed in the companion paper.  相似文献   

4.
Cavity ring-down spectroscopy with an off-axis multipass cell and space separated detectors is proposed to record absorption spectra without modulation of the diode laser intensity. The spectral resolution is approximately 0.0003 cm-1. The whole spectrum is obtained for one continuous tuning of the laser frequency for approximately 20 ms. When comparing this method to conventional CRDS the required rise time is 1000 times slower. The recording of the whole spectrum for one measurement gives additional possibilities of signal extraction at relatively high noise. The technique is applied to absorption measurement of NO2 in atmosphere.  相似文献   

5.
In this paper, I consider theoretical models of the decay via photobleaching of a sample of surface-immobilized fluorescent molecules excited by a spatially varying laser intensity profile. I show that, with mild restrictions on the photobleaching mechanism, the fluorescence decay measured in a nonuniform excitation profile is always nonexponential. Under the same conditions, the fluorescence decay can always be approximated by a discrete sum of exponentials. A particular example is given in which a homogeneous population of fluorophores with a single (intensity-dependent) photobleaching lifetime, when illuminated by a Gaussian laser, exhibits power law fluorescence decay at long times. These results indicate that the observation of multiple exponentials in single molecule or ensemble photobleaching lifetime measurements can arise solely as an artifact of a spatially varying laser profile and is not necessarily indicative of heterogeneity in molecular internal states, conformation, or local environment.  相似文献   

6.
The plasma plume induced by dual-pulse laser ablation of a titanium target in vacuum was analyzed by the technique of cavity ringdown spectroscopy (CRDS). Large Doppler-splitting of the absorption spectral lines was observed which is due to increase of the velocity components parallel to the optical axis and specific features of the CRDS measurements. Vertical velocity component, the particle number density and plasma volume also show increase compared to the single-pulse laser ablation. The forward convolution best fit of absorption lineshapes was used to extract parameters describing dual-pulse laser ablation plasma plume.  相似文献   

7.
使用高灵敏的光腔衰荡光谱(CavityRingDownSpectroscopy)技术测出了异丙醇的O-H伸缩v=4、5振动泛频光谱,每个振动能级都有三个吸收峰,被归属为分子构像的O-H伸缩泛频吸收.给出了光腔衰荡光谱的振动泛频吸收的谱带强度公式,并求得分子不同构像在不同振动能级的O-H伸缩泛频吸收的谱带强度;同时利用局域模理论,求得分子各O-H伸缩局域模振子的机械频率(X1)、非谐性(X2)以及解离能(D).用密度泛函(DFT)B3LYP/6-31+G*理论方法优化了分子的各种可能构像,验证了分子存在反式(trans)和偏转(gauche)两种稳定构像,计算的分子的O-H伸缩频率及构像稳定性同实验结果是一致的.  相似文献   

8.
Methane (CH4) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.  相似文献   

9.
Based on laser absorption spectroscopy (LAS), we developed a vapor density monitor for controlling the vaporization rate of Yb using a tunable diode laser. The laser source consisted of an extended cavity violet diode laser which has an emission wavelength of 398.8 nm coincident with the Yb absorption transition line, 6s(2) 1S(0)-6s6p 1P(1). The light emitted from the diode laser was transmitted across an atomic vapor column generated by heating the Yb metal, while the laser frequency was scanned across the atomic transition line. By comparing the amount of incident light to the amount of light transmitted after the light passed through the vapor column, the vapor density was determined using the Beer's law. From the experimental results, we demonstrated that the diode-laser-based LAS operated successfully for the real-time monitoring of the Yb vapor density.  相似文献   

10.
We demonstrate a cavity ringdown spectrometer that affords a frequency resolution higher than the conventional limit imposed by the bandwidth of a pulsed laser source. A Fabry–Perot etalon at the exit of a ringdown cavity disperses the frequency components of a broadband ringdown signal spatially, permitting a narrow-linewidth spectral measurement based on single-exponential decay signals. A proof of principle experiment is presented with the P(9) transition of the [50]_10000 band of C2H2. This technique is expected to be useful for in situ monitoring molecular concentration.  相似文献   

11.
The thermal decomposition rate of N2O5 in 760 Torr of air as a function of temperature between 314 and 348 K has been investigated using the technique of pulsed laser cavity ring-down spectroscopy (CRDS) detection of NO3 radicals at 662 nm. The Arrhenius expression of the thermal decomposition rates determined by the CRDS experiments, which is incorporated with literature values down to 263 K, is given by 1.36 × 1015 exp{(−11300 ± 200)/T} s−1 over the temperature range 263–348 K. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 679–684, 2008  相似文献   

12.
A time-dependent approach to study phase control over molecular photoabsorption, provided by intense laser pulses, is elaborate. The method allows for the decay linewidth of molecular states and frequency bandwidth of the controlling laser field, and can be applied in weak and strong laser fields where the perturbation theory is invalid. It is shown that a frequency mismatch between the fundamental laser wave and its third harmonic can destroy control. For the example of the one-photon versus three-photon control a simple picture of interference from two monochromatic absorption pathways is not enough to explain phase control and one needs to consider a nonlinear temporal interference of multiquantum transitions. In the perturbation-theory limit an elegant generalization of the famous Shapiro-Hepburn-Brumer equation for the one-photon versus three-photon control is derived. Various numerical calculations illustrate the dependence of phase control on molecular linewidth, fundamental laser wavelength, pulse duration, and peak intensity. It is obtained, that the one-photon versus three-photon control is productive if the molecular state populations, individually produced by each laser wave, have beats of approximately the same frequency. The calculations demonstrate that an enough intense optical pulse can suppress molecular decay and may be used in order to keep stable the state population of a decaying molecule for a long time. The available experimental results for the one-photon versus three-photon control over simple and large polyatomic molecules are analyzed and recommendations for the experimental improvement of control are formulated.  相似文献   

13.
Here we report further results in our recent extension of cavity ring down spectroscopy (CRDS) to CW single frequency lasers. We previously pointed out the excellent reproducibility of our spectra, in particular the baseline measurements obtained from the empty cavity. The ability of accurately measuring the zero absorption baseline is essential when studying very broad or congested absorption spectra or even continua. We demonstrate the performance of our CW-CRDS setup by obtaining the absolute absorption spectrum of a weak and broad overtone transition in CHF3. We also discuss how the present results will apply to conventional pulsed-CRDS.  相似文献   

14.
Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature-stabilised environments.  相似文献   

15.
A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring‐Down Spectrometry (CRDS). Separation of the analysed water vapour from non‐volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling‐CRDS (DS‐CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS‐CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS‐CRDS system was used to analyse the O and H isotope composition in short‐lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration‐related changes in cave drip water. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Liquid chromatography (LC) with cavity ring-down spectroscopy (CRDS) detection, using flow cuvettes (put under normal incidence inside the ring-down cavity), is demonstrated. Fresnel reflections are maintained within the capture range of a stable cavity of 4 cm length. This method circumvents the need for specific Brewster's angles and possible mirror degradation is avoided. The flow cuvettes are commercially available at low cost. At 355 nm (the frequency-tripled output of a Nd:YAG laser), the system surpasses the performance of conventional absorbance detectors; the baseline noise was 1.3 x 10(-5)AU and detection limits (injected concentrations) were between 40 and 80 nM for nitro-polyaromatic hydrocarbons with an extinction coefficient epsilon of 7.3-10.2 x 10(3)M(-1)cm(-1). The system was also tested at 273 nm, but in the deep UV the reflectivity of the currently best available mirrors (R>or=99.91%) is still too low to show a significant improvement as compared to conventional UV-vis detection.  相似文献   

17.
Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H2O in the 1.56 and 1.36 μm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.  相似文献   

18.
Near-ultraviolet absorption spectrum of the B 2A" 0 ← X 2A" band of the vinoxy radical(CH2CHO)is recorded by cavity ringdown spectroscopy(CRDS). The absorption spectrum shows a series of vibronic bands starting from 28786 cm - 1 and an increasing broad background towards higher photon energy. The CRDS absorption spectrum is similar to an early low-resolution absorption spectrum;and the vibronic peak positions match well with those in the laser-induced fluorescence and photofragment yield spectra.  相似文献   

19.
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.  相似文献   

20.
Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号