首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid beta-peptide (Abeta) plays a critical role in Alzheimer's disease (AD). The monomeric state of Abeta can self-assemble into oligomers, protofibrils, and amyloid fibrils. Since the fibrils and soluble oligomers are believed to be responsible for AD, the construction of molecules capable of capturing these species could prove valuable as a means of detecting these potentially toxic species and of providing information pertinent for designing drugs effective against AD. To this aim, we have designed short peptides with various hydrophobicities based on the sequence of Abeta14-23, which is a critical region for amyloid fibril formation. The binding of the designed peptides to Abeta and the amplification of the formation of peptide amyloid-like fibrils coassembled with Abeta are elucidated. A fluorescence assay utilizing thioflavin T, known to bind specifically to amyloid fibrils, revealed that two designed peptides (LF and VF, with the leucine and valine residues, respectively, in the hydrophobic core region) could form amyloid-like fibrils effectively by using mature Abeta1-42 fibrils as nuclei. Peptide LF also coassembled with soluble Abeta oligomers into peptide fibrils. Various analyses, including immunostaining with gold nanoparticles, enzyme-linked immunosorbent assays, and size-exclusion chromatography, confirmed that the LF and VF peptides formed amyloid-like fibrils by capturing and incorporating Abeta1-42 aggregates into their peptide fibrils. In this system, small amounts of mature Abeta1-42 fibrils or soluble oligomers could be transformed into peptide fibrils and detected by amplifying the amyloid-like fibrils with the designed peptides.  相似文献   

2.
We present the 2D self-assembly properties of an amyloid-like peptide (LSFDNSGAITIG-NH2) (i.e., LSFD) over a whole range of spatial scales. This peptide is known to adopt an amyloid-like behavior in water where it aggregates into fibrils. Monolayers of this 12 amino acid peptide were built by direct spreading and compression of an organic unstructured LSFD solution at the air/water interface. Investigation by infrared spectroscopy of the peptide secondary structure reveals beta-sheet formation at the water surface. As evidenced by Brewster angle microscopy, compression of the peptidic film results in the formation of large condensed domains. We used atomic force microscopy to show that these domains are made of rather monodisperse, elongated domains of monomolecular thickness, which are about 1 microm long and hundred of nanometers wide. These nanodomains can be compacted up to the formation of a homogeneous monolayer on the micrometer scale. These bidimensional structures appear as a surface-induced counterpart of the bulk amyloid fibrils that do not form at the air/water interface. These self-assembled peptide nanostructures are also very promising for building organized nanomaterials.  相似文献   

3.
The activity and kinetic stability of a keratinolytic subtilisin-like protease from Bacillus sp. P45 was investigated in 100 mM Tris-HCl buffer (pH 8.0; control) and in buffer with addition of Ca(2+) or Mg(2+) (1-10 mM), at different temperatures. Addition of 3 mM Ca(2+) or 4 mM Mg(2+) resulted in a 26% increment on enzyme activity towards azocasein when compared to the control (100%; without added Ca(2+) or Mg(2+)) at 55 °C. Optimal temperature for activity in the control (55 °C) was similar with Mg(2+); however, temperature optimum was increased to 60 °C with 3 mM Ca(2+), displaying an enhancement of 42% in comparison to the control at 55 °C. Stability of protease P45 in control buffer and with Mg(2+) addition was assayed at 40-50 °C, and at 55-62 °C with Ca(2+) addition. Data were fitted to six kinetic inactivation models, and a first-order equation was accepted as the best model to describe the inactivation of protease P45 with and without metal ions. The kinetic and thermodynamic parameters obtained showed the crucial role of calcium ions for enzyme stability. As biocatalyst stability is fundamental for commercial/industrial purposes, the stabilising effect of calcium could be exploited aiming the application of protease P45 in protein hydrolysis.  相似文献   

4.
Many unrelated proteins and peptides can assemble into amyloid or amyloid-like nanostructures, all of which share the cross-beta motif of repeat arrays of beta-strands hydrogen-bonded along the fibril axis. Yet, paradoxically, structurally polymorphic fibrils may derive from the same initial polypeptide sequence. Here, solid-state nuclear magnetic resonance (SSNMR) analysis of amyloid-like fibrils of the peptide hIAPP 20-29, corresponding to the region S (20)NNFGAILSS (29) of the human islet amyloid polypeptide amylin, reveals that the peptide assembles into two amyloid-like forms, (1) and (2), which have distinct structures at the molecular level. Rotational resonance SSNMR measurements of (13)C dipolar couplings between backbone F23 and I26 of hIAPP 20-29 fibrils are consistent with form (1) having parallel beta-strands and form (2) having antiparallel strands within the beta-sheet layers of the protofilament units. Seeding hIAPP 20-29 with structurally homogeneous fibrils from a 30-residue amylin fragment (hIAPP 8-37) produces morphologically homogeneous fibrils with similar NMR properties to form (1). A model for the architecture of the seeded fibrils is presented, based on the analysis of X-ray fiber diffraction data, combined with an extensive range of SSNMR constraints including chemical shifts, torsional angles, and interatomic distances. The model features a cross-beta spine comprising two beta-sheets with an interface defined by residues F23, A25, and L27, which form a hydrophobic zipper. We suggest that the energies of formation for fibril form containing antiparallel and parallel beta-strands are similar when both configurations can be stabilized by a core of hydrophobic contacts, which has implications for the relationship between amino acid sequence and amyloid polymorphism in general.  相似文献   

5.
FT-IR data of six terminally blocked tripeptides containing Acp (ε-aminocaproic acid) reveals that all of them form supramolecular β-sheets in the solid state. Single crystal X-ray diffraction studies of two peptides not only support this data but also disclose the fact that the supramolecular β-sheet formation is initiated via dimer formation. The Scanning Electron Microscopic images of all peptides exhibit amyloid-like fibrils that show green birefringence after binding with Congo red, which is a characteristic feature of many neurodegenerative disease causing amyloid fibrils.  相似文献   

6.
Functional amyloid has been increasingly applied as self-assembling nanostructures to construct multifunctional biomaterials. However, little has been known how different side domains, varied fusion positions and subunits affect self-assembly and morphologies of amyloid fibrils. Here, we constructed three groups of two-component amyloid proteins based on CsgA, the major protein components of Escherichia coli biofilms, to bridge these gaps. We showed that all fusion proteins have amyloid features, as indicated by Congo red assay. Atomic force microscopy (AFM) indeed reveals that these fusion proteins are able to self-assemble into fibrils, with an average diameter of 0.5-2 nm and length of hundreds of nanometers to several micrometers. The diameter of fibrils increases with the increase of the molecular weight of fusion domains, while the dynamic assembly of recombinant proteins was delayed as a result of the introduction of fusion domains. Moreover, fusion of the same functional domains but at intermediate position seems to cause the most interference on fibril assembly compared with those fused at C or Nterminus, as mainly short and irregular fibrils were detected. This phenomenon appears more pronounced for randomly coiled mussel foot proteins (Mfps) than for rigid chitin-binding domain (CBD). Finally, increase of the molecular weight of tandem repeats in protein monomer seemed to increase the fibril diameter of the resultant fibrils, but either reduction of the tandem repeats of CsgA to one single belta-sheet loop or increase in the number of tandem repeats of CsgAs from one to four produced shorter and intermittent fibrils compared with CsgA control protein. These studies therefore provide insights into self-assembly of two-component amyloid proteins and lay the foundation for rational design of multifunctional molecular biomaterials.  相似文献   

7.
Short peptides derived from p14ARF and Hdm2 (14 and 15 amino acids in length, respectively), two cancer associated proteins, have been found to co-assemble into amyloid-like structures. Larger protein domains containing these peptide segments interact in cells and also undergo a disorder-to-order transition upon binding in vitro. In contrast to the association of beta-strand assemblies with amyloid diseases, the system described herein utilizes the formation of binary, extended beta-strands as a novel mechanism of biomolecular assembly. The beta-strand-containing fibrils formed from these peptides may allow the directed assembly of decorated fibrils with applications as biological nanostructures.  相似文献   

8.
The hA5G18 peptide (DDFVFYVGGYPS) identified from the human laminin α5 chain G domain promotes cell attachment and spreading when directly coated on a plastic plate, but does not show activity when it is conjugated on a chitosan matrix. Here, we focused on the structural requirement of hA5G18 for activity. hA5G18 was stained with Congo red and formed amyloid-like fibrils. A deletion analysis of hA5G18 revealed that FVFYV was a minimum active sequence for the formation of amyloid-like fibrils, but FVFYV did not promote cell attachment. Next, we designed functional fibrils using FVFYV as a template for amyloid-like fibrils. When we conjugated an integrin binding sequence Arg-Gly-Asp (RGD) to the FVFYV peptide with Gly-Gly (GG) as a spacer, FVFYVGGRGD promoted cell attachment in a plate coat assay, but a negative control sequence RGE conjugated peptide, FVFYVGGRGE, also showed activity. However, when the peptides were conjugated to Sepharose beads, the FVFYVGGRGD beads showed cell attachment activity, but the FVFYVGGRGE beads did not. These results suggest that RGD and RGE similarly contribute to cell attachment activity in amyloid-like fibrils, but only RGD contributes the activity on the Sepharose beads. Further, we conjugated a basic amino acid (Arg, Lys, and His) to the FVFYV peptide. Arg or Lys-conjugated FVFYV peptides, FVFYVGGR and FVFYVGGK, showed cell attachment activity when they were coated on a plate, but a His-conjugated FVFYV peptide FVFYVGGH did not show activity. None of the basic amino acid-conjugated peptides showed cell attachment in a Sepharose bead assay. The cell attachment and spreading on FVFYVGGR and FVFYVGGK were inhibited by an anti-integrin β1 antibody. These results suggest that the Arg and Lys residues play critical roles in the interaction with integrins in amyloid-like fibrils. FVFYV is useful to use as a template for amyloid-like fibrils and to develop multi-functional biomaterials.  相似文献   

9.

Background  

Breakpoint cluster region (Bcr) is a multi-domain protein that contains a C-terminal GTPase activating protein (GAP) domain for Rac. Transglutaminase 2 (TG2) regulates Bcr by direct binding to its GAP domain. Since TG2 has transglutaminase activity that has been implicated in the response to extreme stress, we investigated if Bcr can also act as a substrate for TG2.  相似文献   

10.
We report for the first time on the templating effect of β-lactoglobulin amyloid-like fibrils to synthesize gold single crystals of several decades of μm in dimensions. The gold single crystals were produced by reducing an aqueous solution of chloroauric acid by β-lactoglobulin amyloid protein fibrils. Atomic force microscopy, conventional and scanning transmission electron microscopy, electron diffraction and optical microscopy techniques were combined to characterize the structure of the gold crystals. The single-crystalline features of these macroscopic gold crystals are witnessed by their distinctive hexagonal and triangular shape and are confirmed by selected area electron diffraction (SAED). UV-vis absorption spectrum, recorded after a reaction time of 6h at the heating temperature of 55°C showed a surface plasmon resonance peak at 540 nm. With the increase of reaction time to 24h, the absorption spectrum peaks shift to a very broad and higher wavelength region extending up to near infrared region. Remarkably, these single crystalline gold crystals show auto fluorescence when illuminated to UV lamp. Further increase in β-lactoglobulin amyloid fibrils concentration above the isotropic-nematic transition, drives the formation of gold single crystals microplates stacking together and self-assembling into new hierarchical, layered protein-gold hybrid composites.  相似文献   

11.
The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils.  相似文献   

12.
Transglutaminase (TGase) was cross-linked with glutaraldehyde, and cross-linked crystalline transglutaminase was immobilized on a polypropylene microporous membrane by UV-induced grafting. Immobilized enzyme activity were calculated to be 0.128 U/cm2 polypropylene microporous membrane. The microstructure and enzyme characteristics of free, cross-linked and immobilized transglutaminase were compared. The optimum temperature of free transglutaminase was determined to be approximately 40 °C, while cross-linking and immobilization resulted in an increase to approximately 45 °C and 50 °C. At 60 °C, immobilized, cross-linked and free transglutaminase retained 91.7 ± 1.20%, 63.2 ± 1.05% and 37.9 ± 0.98% maximum activity, respectively. The optimum pH was unaffected by the state of transglutaminase. However, the thermal and pH stabilities of cross-linked and immobilized transglutaminase were shown to increase.  相似文献   

13.
Collagen is an important and widely used biomaterial and therapeutic. The construction of large-scale collagen structures via the self-assembly of small collagen-related peptides has been extensively studied in the past decade. Here, we report a highly effective and simple means to assemble small synthetic collagen-related peptides into various higher-order structures by utilizing metal-histidine coordination. In this work, two short collagen-related peptides in which histidine residues were incorporated as metal binding sites were designed and chemically synthesized: HG(PPG)(9)GH (X9) and HG(PPG)(4)(PHG)(PPG)(4)GH (PHG). Circular dichroism measurements indicated that these two peptides form only marginally stable collagen triple helices but that their stability can be increased upon the addition of metal ions. Dynamic light scattering analyses, turbidity measurements, TEM, and SEM results demonstrated the metal ion-dependent self-assembly of X9 and PHG into supramolecular structures ranging from various nanofibrils to microscale spherical, laminated, and granulated assemblies. The topology and size of these higher-order structures depends both on the metal ion identity and the location of the binding sites. Most intriguingly, the assembled fibrils show similar D-periodicity to that of natural collagen. Our results demonstrate that metal-histidine coordination can serve as an effective force to induce the self-assembly of unstable collagen-related peptides into higher-order structures.  相似文献   

14.
Naskar J  Drew MG  Deb I  Das S  Banerjee A 《Organic letters》2008,10(13):2625-2628
A water-soluble, hydrophilic tripeptide GYE, having sequence identity with the N-terminal segment of amyloid peptides Abeta(9-11), upon self-association exhibits amyloid-like fibrils and significant neurotoxicity towards the Neuro2A cell line. However, the tripeptides GFE and GWE, in which the centrally located tyrosine residue has been replaced by phenylalanine or tryptophan, fail to show amyloidogenic behavior and exhibit little or no neurotoxicity.  相似文献   

15.
Supramolecular assembly of peptides and proteins into amyloid fibrils is of multifold interest, going from materials science to physiopathology. The binding of metal ions to amyloidogenic peptides is associated with several amyloid diseases, and amyloids with incorporated metal ions are of interest in nanotechnology. Understanding the mechanisms of amyloid formation and the role of metal ions can improve strategies toward the prevention of this process and enable potential applications in nanotechnology. Here, studies on Zn(II) binding to the amyloidogenic peptide Aβ11-28 are reported. Zn(II) modulates the Aβ11-28 aggregation, in terms of kinetics and fibril structures. Structural studies suggest that Aβ11-28 binds Zn(II) by amino acid residues Glu11 and His14 and that Zn(II) is rapidly exchanged between peptides. Structural and aggregation data indicate that Zn(II) binding induces the formation of the dimeric Zn(II)(1)(Aβ11-28)(2) species, which is the building block of fibrillar aggregates and explains why Zn(II) binding accelerates Aβ11-28 aggregation. Moreover, transient Zn(II) binding, even briefly, was enough to promote fibril formation, but the final structure resembled that of apo-Aβ11-28 amyloids. Also, seeding experiments, i.e., the addition of fibrillar Zn(II)(1)(Aβ11-28)(2) to the apo-Aβ11-28 peptide, induced aggregation but not propagation of the Zn(II)(1)(Aβ11-28)(2)-type fibrils. This can be explained by the dynamic Zn(II) binding between soluble and aggregated Aβ11-28. As a consequence, dynamic Zn(II) binding has a strong impact on the aggregation behavior of the Aβ11-28 peptide and might be a relevant and so far little regarded parameter in other systems of metal ions and amyloidogenic peptides.  相似文献   

16.
We report the self-assembly of insulin monomers into amyloid fibrils within microchannels. To demonstrate the microfluidic amyloid formation and fibril growth on a solid surface, we seeded the internal surfaces of the microchannels with insulin monomers via N-hydroxysuccinimide ester activation and continuously flushed a fresh insulin solution through the microchannels. According to our analysis using optical and fluorescence microscopy, insulin amyloid preferentially formed in the center of the microchannels and, after reaching a certain density, spread to the side walls of the microchannels. By using ex situ atomic force microscopy, we observed the growth of amyloid fibrils inside the microchannels, which occurred at a much higher rate than that in bulk systems. After 12 h of incubation, insulin formed amyloid spherulites having "Maltese cross" extinction patterns within the microchannels according to the polarized microscopic analysis. Microfluidic amyloid formation enabled low consumption of reagents, reduction of incubation time, and simultaneous observation of amyloid formation under different conditions. This work will contribute to the rapid analysis of amyloid formation associated with many protein misfolding diseases.  相似文献   

17.
Amyloid fibrils are affiliated with various human pathologies. Knowledge of their molecular architecture is necessary for a detailed understanding of the mechanism of fibril formation. Vibrational circular dichroism (VCD) spectroscopy has recently shown sensitivity to amyloid fibrils [Ma et al. J. Am. Chem. Soc. 2007, 129, 12364 and Measey et al. J. Am. Chem. Soc. 2009, 131, 18218]. In particular, amyloid fibrils give rise to an intensity enhanced signal in the amide I band region of the corresponding VCD spectrum, offering promise of utilizing such a method for probing fibrillogenesis and the chiral structure of fibrils. Herein, we further investigate this phenomenon and demonstrate the use of VCD to probe the fibril formation kinetics of a short alanine-rich peptide. To elucidate the origin of the anomalous VCD intensity enhancement, we use an excitonic coupling model to simulate the VCD spectrum of stacked β-sheets containing one (Ising-like model) and two amide I oscillators per strand, as models for the underlying amyloid-fibril secondary structure. With this simple model, we show that the VCD intensity enhancement of amyloid-like fibrils results from intrasheet and, to a more limited extent, also from intersheet vibrational coupling between stacked β-sheets. The enhancement requires helically twisted sheets and is most pronounced for arrangements with parallel-oriented strands. Both the intersheet distance and the orientation of the amide I transition dipole moments of neighboring sheets are found to modulate the intensity enhancement of the amide I VCD signal. Moreover, our simulations suggest that, depending on the three-dimensional arrangement of the β-strands, the sign of the VCD signal of amyloid-like fibrils can be used to distinguish between right- and left-handed helical twists of parallel-oriented β-sheets. We compare the results of our simulation to experimental spectra of two short peptides, GNNQQNY, the N-terminal peptide fragment of the yeast prion protein Sup35, and an amyloidogenic alanine-rich peptide, AKY8. Our results demonstrate the advantages of using VCD spectroscopy to probe the kinetics of peptide and protein aggregation as well as the chirality of the resulting supramolecular structure.  相似文献   

18.
Single crystal X-ray diffraction studies show that the extended structure of dipeptide Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel beta-sheet structure. In dipeptide Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides and form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.  相似文献   

19.
Early detection of amyloid fibrils is very important for the timely diagnosis of several neurological diseases. Thioflavin‐T (ThT) is a gold standard fluorescent probe for amyloid fibrils and has been used for the last few decades. However, due to its positive charge, ThT is incapable of crossing the blood–brain barrier and cannot be used for in vivo imaging of fibrils. In the present work, we synthesized a neutral ThT derivative, 2‐[2’‐Me,4’‐(dimethylamino)phenyl]benzothiazole (2Me‐DABT), which showed a strong affinity towards the amyloid fibrils. On association with the amyloid fibrils, 2Me‐DABT not only showed a large increase in its emission intensity, but also, unlike ThT, a large blueshift in its emission spectrum was observed. Thus, unlike ThT, 2Me‐DABT is a potential candidate for the ratiometric sensor of the amyloid fibrils. Detailed photophysical properties of 2Me‐DABT in amyloid fibrils and different solvent media were studied to understand its sensory activity. Fluorescence resonance energy transfer (FRET) studies suggested that the sites of localization for ThT and 2Me‐DABT in amyloid fibrils are not same and their average distance of separation in amyloid fibrils was determined. The experimental data was nicely supported by molecular docking studies, which confirmed the binding of 2Me‐DABT in the inner core of the amyloid fibrils.  相似文献   

20.
The formation of amyloid fibrils is a self-assembly process of peptides or proteins. The superior mechanical properties of these fibrils make them interesting for materials science but constitute a problem in amyloid-related diseases. Amyloid structures tend to be polymorphic, and their structure depends on growth conditions. To understand and control the assembly process, insights into the relation between the mechanical properties and molecular structure are essential. We prepared long, straight as well as short, worm-like β-lactoglobulin amyloid fibrils and determined their morphology and persistence length by atomic force microscopy (AFM) and the molecular conformation using vibrational sum-frequency generation (VSFG) spectroscopy. We show that long fibrils with near-100% β-sheet content have a 40-times higher persistence length than short, worm-like fibrils with β-sheet contents below 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号