首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据金属-有机骨架材料(MOFs)的设计思想, 在MOF-5(对苯二甲酸为桥联配体, Zn4O金属簇为中心的配位化合物)的基础上设计了10 种以Zn4O 金属簇为中心(Corner), 以不同基团单取代的对苯二甲酸(BDC)衍生物为桥联配体(Linker)的多孔材料. 用巨正则蒙特卡罗(GCMC)模拟方法, 计算了这些材料在298 K、1-10 MPa条件下对甲烷的吸附量, 讨论了不同取代基与甲烷吸附量的关系.结果发现, 在298 K、3.5 MPa 时甲烷的吸附量主要取决于吸附热, 并且以硝基取代的配体构成的MOF分子吸附甲烷效果最好. 在此基础上, 进一步设计了以四硝基取代对苯二甲酸为桥联配体的MOF-4NO2, 该结构在相同条件下对甲烷的超额吸附量为209 cm3·cm-3, 总吸附量达到228 cm3·cm-3, 比美国能源部(DOE)提出的甲烷吸附材料应用要求标准高26%.  相似文献   

2.
The contributions of terephthalic acid and Zn(2+)-coordinated water in N,N-diethylformamide (DEF) to the overall proton activity in the synthesis of MOF-5 (Zn4O(BDC)3, BDC = 1,4-benzenedicarboxylate) were quantitatively determined by combined electrochemical and UV-vis spectroscopic measurements. Structural transformations of zinc carboxylate-based metal organic frameworks due to their exposure to environments with variable water concentrations and the chemical means necessary to revert these transitions have been investigated. It was found that the water-induced structural transition of MOF-5 to the hydroxide structure Zn3(OH)2(BDC)2 x 2 DEF (MOF-69c) can be reverted by a thermal treatment of the obtained compound and its subsequent exposure to anhydrous DEF. MOF-5 syntheses from simple carboxylates as well as a water-free synthesis based on nitrate decomposition are presented. The latter demonstrates that nitrate can serve as the sole source for the oxide ion in MOF-5.  相似文献   

3.
The first experimental thermodynamic analysis of a metal-organic framework (MOF) has been performed. Measurement of the enthalpy of formation of MOF-5 from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H(2)BDC), and occluded N,N-diethylformamide (DEF) (if any) gave values of 78.64 ± 2.95 and 99.47 ± 3.62 kJ·[mol of Zn(4)O(BDC)(3)·xDEF](-1) for the as-made form and the desolvated structure, respectively. These as-made and desolvated enthalpies correspond to the values 19.66 ± 0.74 and 24.87 ± 0.94 kJ·(mol of Zn)(-1), respectively. The energetics of desolvated MOF-5 per mole of Zn falls in line with trends relating the enthalpy of inorganic porous materials (zeolites, zeotypes, and mesoporous materials) to molar volume. MOF-5 extends a plateauing trend first suggested by thermodynamic studies of mesoporous materials. This leveling off of the destabilization energetics as the void space swells suggests that additional void volume beyond a certain point may begin to act as a parameter "external" to the structure and not destabilize it further. This could help explain the rich landscape of large-volume MOFs and their ease of desolvation.  相似文献   

4.
Russian Journal of Coordination Chemistry - The known metal-organic framework {Zn4O(BDC)3} (MOF-5 (I), where BDC is terephthalate anion) is synthesized by the solvothermal method in autoclaves...  相似文献   

5.
Kim H  Das S  Kim MG  Dybtsev DN  Kim Y  Kim K 《Inorganic chemistry》2011,50(8):3691-3696
For the first time, phase-pure interpenetrated MOF-5 (1) has been synthesized and its gas sorption properties have been investigated. The phase purity of the material was confirmed by both single-crystal and powder X-ray diffraction studies and TGA analysis. A systematic study revealed that controlling the pH of the reaction medium is critical to the synthesis of phase-pure 1, and the optimum apparent pH (pH*) for the formation of 1 is 4.0-4.5. At higher or lower pH*, [Zn(2)(BDC)(2)(DMF)(2)] (2) or [Zn(5)(OH)(4)(BDC)(3)] (3), respectively, was predominantly formed. The pore size distribution obtained from Ar sorption experiments at 87 K showed only one peak, at ~6.7 ?, which is consistent with the average pore size of 1 revealed by single crystal X-ray crystallography. Compared to MOF-5, 1 exhibited higher stability toward heat and moisture. Although its surface area is much smaller than that of MOF-5 due to interpenetration, 1 showed a significantly higher hydrogen capacity (both gravimetric and volumetric) than MOF-5 at 77 K and 1 atm, presumably because of its higher enthalpy of adsorption, which may correlate with its higher volumetric hydrogen uptake compared to MOF-5 at room temperature, up to 100 bar. However, at high pressures and 77 K, where the saturated H(2) uptake mostly depends on the surface area of a porous material, the total hydrogen uptake of 1 is notably lower than that of MOF-5.  相似文献   

6.
Zn-based multivariate metal-organic frameworks (MTV-MOFs) with different functionality proportions and with different thermal and chemical stabilities can be obtained by employing the appropriate synthesis method.  相似文献   

7.
The secondary building unit (SBU) has been identified as a useful tool in the analysis of complex metal-organic frameworks (MOFs). We illustrate its applicability to rationalizing MOF crystal structures by analysis of nine new MOFs which have been characterized by single-crystal X-ray diffraction. Tetrahedral SBUs in Zn(ADC)(2).(HTEA)(2) (MOF-31), Cd(ATC).[Cd(H(2)O)(6)](H2O)(5) (MOF-32), and Zn(2)(ATB)(H2O).(H2O)(3)(DMF)(3) (MOF-33) are linked into diamond networks, while those of Ni(2)(ATC)(H(2)O)(4).(H2O)(4) (MOF-34) have the structure of the Al network in SrAl(2). Frameworks constructed from less symmetric tetrahedral SBUs have the Ga network of CaGa(2)O(4) as illustrated by Zn(2)(ATC).(C(2)H(5)OH)(2)(H2O)(2) (MOF-35) structure. Squares and tetrahedral SBUs in Zn(2)(MTB)(H2O)(2).(DMF)(6)(H2O)(5) (MOF-36) are linked into the PtS network, which is the simplest structure type known for the assembly of these shapes. The octahedral SBUs found in Zn(2)(NDC)(3).[(HTEA)(DEF)(ClBz)](2) (MOF-37) form the most common structure for linking octahedral shapes, namely, the boron network in CaB(6). New structure types for linking triangular and trigonal prismatic SBUs are found in Zn(3)O(BTC)(2).(HTEA)(2) (MOF-38) and Zn(3)O(HBTB)(2)(H2O).(DMF)(0.5)(H2O)(3) (MOF-39). The synthesis, crystal structure, and structure analysis using the SBU approach are presented for each MOF.  相似文献   

8.
A series of Zr-based metal-organic frameworks were continuously synthesized with high quality and high productivity through microdroplet flow reaction.  相似文献   

9.
High reversibility during crystallization leads to relatively defect-free crystals through repair of nonperiodic inclusions, including those derived from impurities. Microporous coordination polymers (MCPs) can achieve a high level of crystallinity through a related mechanism whereby coordination defects are repaired, leading to single crystals. In this work, we discovered and exploited the fact that this process is far from perfect for MCPs and that a minority ligand that is coordinatively identical to but distinct in shape from the majority linker can be inserted into the framework, resulting in defects. The reaction of Zn(II) with 1,4-benzenedicarboxylic acid (H(2)BDC) in the presence of small amounts of 1,3,5-tris(4-carboxyphenyl)benzene (H(3)BTB) leads to a new crystalline material, MOF-5(O(h)), that is nearly identical to MOF-5 but has an octahedral morphology and a number of defect sites that are uniquely functionalized with dangling carboxylates. The reaction with Pd(OAc)(2) impregnates the metal ions, creating a heterogeneous catalyst with ultrahigh surface area. The Pd(II)-catalyzed phenylation of naphthalene within Pd-impregnated MOF-5(O(h)) demonstrates the potential utility of an MCP framework for modulating the reactivity and selectivity of such transformations. Furthermore, this novel synthetic approach can be applied to different MCPs and will provide scaffolds functionalized with catalytically active metal species.  相似文献   

10.
Metal-organic frameworks (MOFs) show high CO2 storage capacity at room temperature. Gravimetric CO2 isotherms for MOF-2, MOF-505, Cu3(BTC)2, MOF-74, IRMOFs-11, -3, -6, and -1, and MOF-177 are reported up to 42 bar. Type I isotherms are found in all cases except for MOFs based on Zn4O(O2C)6 clusters, which reveal a sigmoidal isotherm (having a step). The various pressures of the isotherm steps correlate with increasing pore size, which indicates potential for gas separations. The amine functionality of the IRMOF-3 pore shows evidence of relatively increased affinity for CO2. Capacities qualitatively scale with surface area and range from 3.2 mmol/g for MOF-2 to 33.5 mmol/g (320 cm3(STP)/cm3, 147 wt %) for MOF-177, the highest CO2 capacity of any porous material reported.  相似文献   

11.
Metal-organic frameworks (MOFs) are promising materials for applications such as separation, catalysis, and gas storage. A key indicator of their structural stability is the shear modulus. By density functional theory calculations in a 106-atom supercell, under the local density approximation, we find c(11)=29.2 GPa and c(12)=13.1 GPa for Zn-based MOF 5. However, we find c(44) of MOF-5 to be exceedingly small, only 1.4 GPa at T=0 K. The binding energy E(ads) of a single hydrogen molecule in MOF-5 is evaluated using the same setup. We find it to be -0.069 to -0.086 eVH(2) near the benzene linker and -0.106 to -0.160 eVH(2) near the Zn(4)O tetrahedra. Substitutions of chlorine and hydroxyl in the benzene linker have negligible effect on the physisorption energies. Pentacoordinated copper (and aluminum) in a framework structure similar to MOF-2 gives E(ads) approximately -0.291 eVH(2) (and -0.230 eVH(2)), and substitution of nitrogen in benzene (pyrazine) further enhances E(ads) near the organic linker to -0.16 eVH(2), according to density functional theory with local density approximation.  相似文献   

12.
《中国化学快报》2023,34(10):108562
Visible-light heterogeneous photocatalyst with high activity and selectivity is crucial for the development of organic transformations, but remains a formidable challenge. Herein, a simple and effective strategy was developed to integrate tetrazine moiety, a visible light active unit, into robust metal-organic frameworks (2D MOF-1(M), M = Co, Mn, Zn, and 3D MOF-2(Co)). MOF-1 series are isomorphous 2D porous frameworks, and MOF-2(Co) displays 3D porous framework. Interestingly, benefiting from the oxidative active species of O2•−, these MOFs all exhibit obviously highly enhanced photocatalytic activities toward the straightforward condensation of o-aminothiophenol and aromatic aldehydes at room temperature in EtOH under visible-white-light irradiation. Notably, compared to 3D MOF, the 2D layered MOF-1(Co) exhibited more excellent catalytic activity with a wide range of substrates possessing preeminent tolerance of steric hindrance. Most impressively, MOF-1(Co) can be recycled at least five times without significant loss of catalytic activity or crystallinity, exhibiting excellent stability and reusability. This study sheds light on the wide-ranging prospects of visible light active 2D MOFs as green photocatalysts for the preparation of fine chemicals  相似文献   

13.
In this article we report the detection and characterization of adsorbed interfacial water within the cages of the metal-organic framework MOF-5 (Zn(4)O(BDC)(3)) by terahertz time-domain spectroscopy (THz TDS) in the frequency range from 5 to 46 cm(-1). The experimental spectra suggest a coupling of the intermolecular motions of the water molecules adsorbed to the collective vibrations of the network at 4 wt% hydration. This finding is supported by the results of MD simulations. When increasing the water content to 8 wt% we observed a non reversible decomposition of MOF-5.  相似文献   

14.
Single crystalline (SC) hollow metal–organic frameworks (MOFs) are excellent host materials for molecular and nanoparticle catalysts. However, due to synthetic challenges, chemically robust SC hollow MOFs are rare. This work reports the construction of a defect-free and chemically stable SC hollow MOF, MOF-801(h), through templated growth from a unit cell mismatched core, UiO-66. Under the protection of excess MOF-801 ligand, fumaric acid, the MOF-801 shell was perfectly retained while the isoreticular UiO-66 core was selectively and completely etched away by formic acid. The combination of a large cavity, small aperture and short diffusion length allows the Pt nanoparticle encapsulated composite catalyst, Pt⊂MOF-801(h), to perform size selective hydrogenation of nitro compounds at an accelerated speed. Impressively, the catalyst can undergo concentrated HCl or boiling water treatment while maintaining its crystallinity, morphology, catalytic activity, and size selectivity. In addition, Au nanoparticles encapsulated catalyst, Au⊂MOF-801(h), was used for the size selective nucleophilic addition of HCl to terminal alkynes for the first time, which is a harsh reaction involving high concentrations of a strong acid.

A chemically robust single crystalline hollow MOF-801 containing Pt and Au nanoparticles was constructed by using UiO-66 as a sacrificial template for size selective catalysis with fast reaction kinetics under harsh chemical conditions.  相似文献   

15.
Room temperature synthesis of metal-organic frameworks (MOFs) has been developed for four well-known MOFs: MOF-5, MOF-74, MOF-177, and MOF-199. A new isoreticular metal framework (IRMOF), IRMOF-0, having the same cubic topology as MOF-5, has been synthesized from acetylenedicarboxylic acid using this method to accommodate the thermal sensitivity of the linker. Despite acetylenedicarboxylate being the shortest straight linker that can be made into an IRMOF, IRMOF-0 forms as a doubly interpenetrating structure, owing to the rod-like nature of the linker.  相似文献   

16.
An effective method denoted as "computer tomography for materials" (mCT) was employed to study the adsorption sites inside metal-organic frameworks (MOFs) at any positions and any view angles. For MOF-5, the first adsorption site alpha(-COO)3 was clearly observed from the mCT images; it locates at the position where three -COO groups joined like a cup. There are four alpha(-COO)3 sites around the Zn4O cluster. Two of them located at the diagonal of the Zn4O cluster are in the same plane "A", whereas the other two equivalent adsorption sites are in another plane "B", which is about 5.4 A away from the plane A. It was found that the electronegativity of oxygen atoms is very important to the adsorption of hydrogen molecules. The hydrogen amount adsorbed in MOFs might be enhanced by introducing some strong electronegative atoms to the organic linkers or frameworks. On the basis of this point of view, five new MOF materials were designed. The adsorbed amounts both in number of hydrogen molecules per unit cell and weight uptake for all of the designed MOFs were calculated. The adsorption amounts of designed MOFs were improved, and the amount for MOF-d5 at 1 bar is as high as 3.7 wt %. It is nearly 5-6 times of that of MOF-5 as a whole. It can be observed that extra adsorption sites were formed in the pores and the effective occupation rate of pore space was obviously improved viewing from the mCT images. These results may give helpful suggestions for the synthetic experimentalists.  相似文献   

17.
Metal-organic polyhedra and frameworks (MOPs and MOFs) were prepared by linking square units M2(CO2)4 (M = Cu and Zn) with a variety of organic linkers designed to control the dimensionality (periodicity) and topology of the resulting structures. We describe the preparation, characterization, and crystal structures of 5 new MOPs and 11 new MOFs (termed MOP-14, -15, -17, -23, -24 and MOF-114, -115, -116, -117, -118, -119, -222, -601, -602, -603, -604) and show how their structures are related to the shape and functionality of the building blocks. The gas uptake behaviors of MOP-23 and MOF-601 to -603 are also presented as evidence that these structures have permanent porosity and rigid architectures.  相似文献   

18.
Metal-organic framework (MOF) materials pose an interesting alternative to more traditional nanoporous materials for a variety of separation processes. Separation processes involving nanoporous materials can be controlled by either adsorption equilibrium, diffusive transport rates, or a combination of these factors. Adsorption equilibrium has been studied for a variety of gases in MOFs, but almost nothing is currently known about molecular diffusion rates in MOFs. We have used equilibrium molecular dynamics (MD) to probe the self-diffusion and transport diffusion of a number of small gas species in several MOFs as a function of pore loading at room temperature. Specifically, we have studied Ar, CH4, CO2, N2, and H2 diffusion in MOF-5. The diffusion of Ar in MOF-2, MOF-3, and Cu-BTC has been assessed in a similar manner. Our results greatly expand the range of MOFs for which data describing molecular diffusion is available. We discuss the prospects for exploiting molecular transport properties in MOFs in practical separation processes and the future role of MD simulations in screening families of MOFs for these processes.  相似文献   

19.
Generally, crystals of synthetic porous materials such as metal-organic frameworks (MOFs) are commonly made up from one kind of repeating pore structure which predominates the whole material. Surprisingly, little is known about how to introduce heterogeneously arranged pores within a crystal of homogeneous pores without losing the crystalline nature of the material. Here, we outline a strategy for producing crystals of MOF-5 in which a system of meso- and macropores either permeates the whole crystal to make sponge-like crystals or is entirely enclosed by a thick crystalline microporous MOF-5 sheath to make pomegranate-like crystals. These new forms of crystals represent a new class of materials in which micro-, meso-, and macroporosity are juxtaposed and are directly linked unique arrangements known to be useful in natural systems but heretofore unknown in synthetic crystals.  相似文献   

20.
Two metal-organic frameworks (MOFs), MOF-501 and MOF-502, respectively, formulated as Co(2)(BPTC)(H(2)O)(5).G(x) and Co(2)(BPTC)(H(2)O)(DMF)(2).G(x) (BPTC = 3,3',5,5'-biphenyltetracarboxylate; G = guest molecules), have been synthesized and structurally characterized, and their topologies were found to be based on the NbO (MOF-501) and PtS (MOF-502) nets. Heating MOF-501 in solution results in the more thermodynamically favored MOF-502.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号