首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Noncatalytic reaction pathways and rates of diethyl ether in supercritical water are determined in a quartz capillary by observing the liquid- and gas-phase 1H and 13C NMR spectra. The reaction is investigated at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.2-0.6 g/cm3, and in subcritical water at 300 and 350 degrees C. The neat reaction (in the absence of solvent) is also studied for comparison at 0.1 M and 400 degrees C. The ether is found to decompose through (i) the proton-transferred fragmentation to ethane and acetaldehyde and (ii) the hydrolysis to ethanol. Acetaldehyde from reaction (i) is consecutively subjected to the unimolecular and bimolecular redox reactions: (iii) the unimolecular proton-transferred decarbonylation forming methane and carbon monoxide, (iv) the bimolecular self-disproportionation producing ethanol and acetic acid, and (v) the bimolecular cross-disproportionation yielding ethanol and carbonic acid. Reactions (ii), (iv), and (v) proceed only in the presence of hot water. Ethanol is produced through the two types of disproportionations and the hydrolysis. The proton-transferred fragmentation is the characteristic reaction at high temperatures and is much more important than the hydrolysis at densities below 0.5 g/cm3. The proton-transferred fragmentation of ether and the decarbonylation of aldehyde are slightly suppressed by the presence of water. The hydrolysis is markedly accelerated by increasing the water density: the rate constant at 400 degrees C is 2.5 x 10(-7) s(-1) at 0.2 g/cm3 and 1.7 x 10(-5) s(-1) at 0.6 g/cm3. The hydrolysis becomes more important in the ether reaction than the proton-transferred fragmentation at 0.6 g/cm3. In subcritical water, the hydrolysis path is dominant at 300 degrees C (0.71 g/cm3), whereas it becomes less important at 350 degrees C (0.57 g/cm3). Acetic acid generated by the self-disproportionation autocatalyzes the hydrolysis at a higher concentration. Thus, the pathway preference can be controlled by the water density, reaction temperature, and initial concentration of diethyl ether.  相似文献   

2.
The reaction pathways and kinetics of C1 aldehydes, formaldehyde (HCHO) and formic acid (HCOOH=HOCHO), are studied at 400 degrees C in neat condition and in supercritical water over a wide range of water density, 0.1-0.6 g/cm3. Formaldehyde exhibits four reactions: (i) the self-disproportionation of formaldehyde generating methanol and formic acid, (ii) the cross-disproportionation between formaldehyde and formic acid generating methanol and carbon dioxide, (iii) the water-independent self-disproportionation of formaldehyde generating methanol and carbon monoxide, and (iv) the decarbonylation of formaldehyde generating hydrogen and carbon monoxide. The self- and cross-disproportionations overwhelm the water-independent self-disproportionation and the formaldehyde decarbonylation. The rate constants of the self- and cross-disproportionations are determined in the water density range of 0.1-0.6 g/cm3. The rate constant of the cross-disproportionation is 2-3 orders of magnitude larger than that of the self-disproportionation, which indicates that formic acid is a stronger reductant than formaldehyde. Combining the kinetic results with our former computational study on the equilibrium constants of the self- and cross-disproportionations, the reaction mechanisms of these disproportionations are discussed within the framework of transition-state theory. The reaction path for methanol production can be controlled by tuning the water density and reactant concentrations. The methanol yield of approximately 80% is achieved by mixing formaldehyde with formic acid in the ratio of 1:2 at the water density of 0.4 g/cm3.  相似文献   

3.
Dimethyl ether oxidation at elevated temperatures (295-600 K)   总被引:1,自引:0,他引:1  
Dimethyl ether (DME) has been proposed for use as an alternative fuel or additive in diesel engines and as a potential fuel in solid oxide fuel cells. The oxidation chemistry of DME is a key element in understanding its role in these applications. The reaction between methoxymethyl radicals and O(2) has been examined over the temperature range 295-600 K and at pressures of 20-200 Torr. This reaction has two product pathways. The first produces methoxymethyl peroxy radicals, while the second produces OH radicals and formaldehyde molecules. Real-time kinetic measurements are made by transient infrared spectroscopy to monitor the yield of three main products-formaldehyde, methyl formate, and formic acid-to determine the branching ratio for the CH(3)OCH(2) + O(2) reaction pathways. The temperature and pressure dependence of this reaction is described by a Lindemann and Arrhenius mechanism. The branching ratio is described by f = 1/(1 + A(T)[M]), where A(T) = (1.6(+2.4)(-1.0) x 10(-20)) exp((1800 +/- 400)/T) cm(3) molecule(-1). The temperature dependent rate constant of the methoxymethyl peroxy radical self-reaction is calculated from the kinetics of the formaldehyde and methyl formate product yields, k(4) = (3.0 +/- 2.1) x 10(-13) exp((700 +/- 250)/T) cm(3) molecule(-1) s(-1). The experimental and kinetics modeling results support a strong preference for the thermal decomposition of alkoxy radicals versus their reaction with O(2) under our laboratory conditions. These characteristics of DME oxidation with respect to temperature and pressure might provide insight into optimizing solid oxide fuel cell operating conditions with DME in the presence of O(2) to maximize power outputs.  相似文献   

4.
采用等容浸渍法制备改性脱水催化剂,通过H2-TPR、Pyridine-IR、还原态NH3-TPD、XRD等表征手段,以及目标反应浆态床CO+H2合成二甲醚,研究了催化剂的还原性能以及酸中心分布与反应性能之间的关系。H2-TPR结果表明,在脱水催化剂γ-Al2O3、V2O5/γ-Al2O3和Sm2O3/γ-Al2O3上不出现还原峰,V2O5、Sm2O3的加入改善了复合催化剂中Cu的还原性能,促进了甲醇催化剂的还原。Pyridine-IR表明,V2O5和Sm2O3的加入对L酸、B酸的量影响不大。还原态NH3-TPD说明V2O5和Sm2O3的加入改变了酸中心的分布,增加了弱酸中心的比率。XRD结果发现,V2O5和Sm2O3均匀分散在γ-Al2O3上,没有新的物种生成。二甲醚合成目标反应的结果表明,改性后催化剂的反应活性增强,合成反应中CO转化率、二甲醚的选择性都得到提高。V2O5和Sm2O3的添加增加了弱酸中心数量,促进了脱水活性,从而提高了复合催化剂合成二甲醚的活性和选择性。  相似文献   

5.
采用自主设计的连续流动气封壁超临界水氧化反应装置,研究了典型醇类物质甲醇、乙醇和异丙醇在超临界水中氧化的反应途径,并归纳了醇类物质超临界水氧化反应的规律及特点。研究结果表明,甲醇超临界水氧化反应的主要中间产物为甲醛,同样条件下转化率较乙醇和异丙醇低;乙醇和异丙醇超临界水氧化反应的主要中间产物为丙酮、乙酸、乙醛和甲醇等。三种醇超临界水氧化过程中均涉及到大量活性自由基的相互作用,表现为脱氢、裂解和聚合等反应形式;产物包括碳链增长、不变、降低三种类型。总体来看,醇类物质超临界水氧化反应的趋势是向碳链降低的方向进行,即通过一系列中间产物最后生成CO2和水。  相似文献   

6.
A simple and versatile method to obtain silica aerogel particles based on the hydrolysis and subsequent condensation of silicon alkoxides in supercritical fluids is proposed. This microparticle production route reduces the number of steps of traditional microparticle sol-gel processing.A case example is explained in more detail. Spherical and fiber silica morphologies were obtained by a one step method using a sol-gel process with supercritical acetone as a solvent. Particle size was controlled by varying the relative amounts of alkoxysilane, water and acetone. The resulting materials are influenced by a large number of experimental parameters; it has been observed that a quite relevant one is the supercritical fluid venting rate. The morphology of the particles was characterized by electron microscopy (SEM and TEM) and Atomic Force Microscopy (AFM). Alternatively, a low temperature synthesis can be performed by using supercritical carbon dioxide as solvent and formic acid as condensation agent.  相似文献   

7.
Gravimetric and colorimetric micromethods for determination of formyl and isonitrile groups are reported. The gravimetric method is based on a quantitative cleavage of the formyl group and decomposition of formed formic acid to carbon monoxide by means of 60% sulfuric acid. Carbon monoxide is oxidized and the formed carbon dioxide is determined gravimetrically.The colorimetric ultramicromethod is based on the basic hydrolysis of the formyl group. After acidifying the hydrolysate, the quantitatively formed formic acid is distilled under special conditions. The acid is then reduced to formaldehyde. Its quantity is determined spectrophotometrically with chromotropic acid.  相似文献   

8.
污染物甲醛为电子给体Pt/TiO2光催化制氢   总被引:10,自引:1,他引:10  
研究了甲醛为电子给体在Pt/TiO2上光催化生成氢的反应。甲醛经光催化降解产生CO2和甲酸,甲酸可进一步被氧化;甲醛的光催化降解与放氢同时发生,催化剂的最佳Pt负载量为0.5%,甲醛浓度对反应的影响,表观上符合Langmuir-Hinshelwood关系式;碱性条件有利于该反应;在甲醛浓度较低时,甲醇的存在能部分地提高放氢速率,并讨论了可能的反应机理。  相似文献   

9.
甲醇在纳米TiO2作用下进行光催化氧化反应的机理研究   总被引:1,自引:0,他引:1  
以纳米TiO2为催化剂,以主波长为364 nm的汞灯为光源,用气相色谱法分别考察了0.1 mol/L的甲醇、甲醛和甲酸水溶液进行光催化氧化反应的动力学规律.Langmuir-Hinshelwood方程进行核算结果证明,该组反应均为零级反应.用TEM、 XRD、 SSA和XPS对催化剂进行表征.根据XPS的检测结果提出了甲醇光催化氧化的反应机理.TiO2光激发活化时间约为30~60 min,生成物及剩余反应物浓度随时间变化的曲线表明,该反应速率为HCH2OH相似文献   

10.
We explored water-assisted decompositions of formic acid in supercritical water in terms of local structure near reactant. A hybrid quantum mechanics/molecular mechanics (QM/MM) simulation used in this paper includes QM part as first solvation shell members around the reactant. A present QM/MM approach can simulate supercritical water solution with a reasonable computational load while keeping the simulation preciseness because a density functional theory of B3LYP/6-31+G(d) level was iterated at every 1000 Monte Carlo solute moves. The formic acid converts mainly decarboxylation by water-assisted mechanism, and the coordinated water molecules play an important role for understanding supercritical water density dependence of the reaction. We analyzed a contour map based on the solute–solvent interaction energy along with the reaction pathway. Coordinated water molecule restricted the dehydration pathway by means of hydrogen bond with formic acid, however, the coordinated water promotes the decarboxylation pathway by means of stabilization of the transition state structure with one catalytic water molecule. The contour map of the pair interaction energy along the reaction path elucidates the role of local structure on reactions in supercritical water.  相似文献   

11.
生物质间接液化合成燃料二甲醚   总被引:1,自引:0,他引:1  
在双功能催化剂JC207/HZSM-5上,对流化床内制备的生物质气脱碳后合成二甲醚进行了研究。结果表明,二甲醚时空产率在260℃达到最大;随反应压力升高而增大;随空速的增加,时空产率先增加后降低。同时发现,在合成二甲醚的生物质气中须把生物质气中二氧化碳降低到5%后才可以提高甲醇合成反应速率,进而提高二甲醚合成反应速率。  相似文献   

12.
The oxidation of formic acid and carbon monoxide was studied at a gold electrode by a combination of electrochemistry, in situ surface-enhanced Raman spectroscopy (SERS), differential electrochemical mass spectrometry, and first-principles DFT calculations. Comparison of the SERS results and the (field-dependent) DFT calculations strongly suggests that the relevant surface-bonded intermediate during oxidation of formic acid on gold is formate HCOO- ad*. Formate reacts to form carbon dioxide via two pathways: at low potentials, with a nearby water to produce carbon dioxide and a hydronium ion; at higher potentials, with surface-bonded hydroxyl (or oxide) to give carbon dioxide and water. In the former pathway, the rate-determining step is probably related to the reaction of surface-bonded formate with water, as measurements of the reaction order imply a surface almost completely saturated with adsorbate. The potential dependence of the rate of the low-potential pathway is presumably governed by the potential dependence of formate coverage. There is no evidence for CO formation on gold during oxidation of formic acid. The oxidation of carbon monoxide must involve the carboxyhydroxyl intermediate, but SERS measurements do not reveal this intermediate during CO oxidation, most likely because of its low surface coverage, as it is formed after the rate-determining step. Based on inconclusive spectroscopic evidence for the formation of surface-bonded OH at potentials substantially below the surface oxidation region, the question whether surface-bonded carbon monoxide reacts with surface hydroxyl or with water to form carboxyhydroxyl and carbon dioxide remains open. The SERS measurements show the existence of both atop and bridge-bonded CO on gold from two distinguishable low-frequency modes that agree very well with DFT calculations.  相似文献   

13.
The chemical equilibria concerning formaldehyde and formic acid are computationally investigated in water over a wide range of thermodynamic conditions. The free energy is evaluated in the method of energy representation for the solvent effect on the decomposition processes of these two compounds. The solvation is found to suppress the production of nonpolar species from a polar. In the two competitive decomposition reactions of formic acid, the solvent strongly inhibits the decarboxylation (HCOOH-->CO2+H2) and its effect is relatively weak for the decarbonylation (HCOOH-->CO+H2O). The equilibrium weights for the two decomposition pathways of formic acid are determined by the equilibrium constant of the water-gas-shift reaction (CO+H2O-->CO2+H2), which is an essential and useful process in fuel technology. The reaction control by the solvent is then examined for the water-gas-shift reaction. Through the comparison of the equilibrium constants in the absence and presence of solvent, even the favorable side of the reaction is shown to be tuned by the solvent density and temperature. The reaction equilibrium is further treated for aldehyde disproportionation reactions involving formaldehyde and formic acid. The disproportionation reactions are found to be subject to relatively weak solvent effects and to be dominated by the electronic contribution.  相似文献   

14.
Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 degrees C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm(-3)). Reactions unveiled are the following: (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C-C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C-C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 x 10(-4) + (2 x 10(-3))[H+], 10(-4) + 10(3)[OH-], and (2 x 10(-3))[H+] M(-1) s(-1), respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches approximately 90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches approximately 80% when formic acid is added in excess to formaldehyde.  相似文献   

15.
浆态床合成二甲醚复合催化剂失活原因探索   总被引:3,自引:0,他引:3  
在反应温度260 ℃、压力5.0 MPa的条件下,对浆态床反应器中二甲醚合成复合催化剂的失活规律进行了研究.结果表明,Cu基催化剂失活较快是导致浆态床二甲醚合成催化剂不稳定的主要原因.通过分析Cu基催化剂在浆态床反应器和固定床反应器中的活性变化规律,发现在浆态床反应器中不能及时导出反应体系的H2O对催化剂的毒副作用导致了浆态床Cu基催化剂快速失活.对失活催化剂进行的TPR、XRD和SEM-EDS表征结果可以看出,Cu粒子的长大和积炭是Cu基催化剂失活的重要原因,与已有文献报道不同的是并未发现明显的Cu元素流失.  相似文献   

16.
The volatile products resulting from polyisoprene popcorn polymer oxidation were analyzed quantitatively for carbon dioxide and water, and semiquantitatively for formaldehyde. The production of these three products was a linear function of the amount of oxygen consumed in the reaction. For every mole of oxygen reacted, 0.098 mole of water, 0.038 mole of carbon dioxide, and > 0.016 mole of formaldehyde were formed. Twenty-four products were detected after extensive oxidation; the major ones being water, carbon dioxide, formaldehyde, formic acid, 2,5-hexanedione, and acetic acid. No levulin-aldehyde was identified in the products. A tentative oxidation mechanism is discussed.  相似文献   

17.
近年来,随着对金属有机化合物的研究的不断深入,人们对它们的兴趣已由对结构、化学性质的探讨而扩展到对物理性质的研究,如磁性质、导电性、光学性质,并从中发现某些金属有机化合物,如某些芳基三羰基铬络合物及二  相似文献   

18.
Highly diastereodifferentiating bimolecular asymmetric photoreaction was achieved in the photosensitized polar addition of methanol to (R)-(+)-limonene. The diastereomeric excess (de) of the photoadduct could be controlled and fine-tuned by changing the internal/external factors such as solvent polarity, reaction temperature, and structure of the sensitizers. The de increased from 23% obtained upon xylene photosensitization in pure methanol at room temperature to >96% upon singlet sensitization with methyl benzoate at -75 degrees C in 0.5 M methanol/diethyl ether solution.  相似文献   

19.
Critical temperatures and pressures of nominal reacting mixture in synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide (quaternary mixture of carbon dioxide + methanol + water + DMC) were measured using a high-pressure view cell. The results suggested that the critical properties of the reacting mixture depended on the reaction extent as well as its initial composition (initial ratio of carbon dioxide to methanol). Such information is essential for determining the reaction conditions when one intends to carry out the synthesis of DMC with CO2 and methanol under supercritical conditions.  相似文献   

20.
A series of new, fluorinated, silicone‐containing polymers with crosslinkable units has been synthesized by hydrosilation in toluene and supercritical carbon dioxide (70°C, 3000 psi) using platinum‐divinyltetramethyldisiloxane (Pt‐DVTMS) as a catalyst. The polymers were characterized by FTIR, NMR, GPC, TGA, and DSC. The molecular weights of these polymers ranged from 9,900 to 41,000. Comparison of the properties between reactions in toluene versus supercritical carbon dioxide indicated that the green solvent is a suitable alternative for hydrosilation. The hydrolysis and thermal curing of the crosslinkable precursor polymers produced higher molecular weight polymers with thermal stabilities ranging from 347 to 417°C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号