首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noncatalytic reaction pathways and rates of diethyl ether in supercritical water are determined in a quartz capillary by observing the liquid- and gas-phase 1H and 13C NMR spectra. The reaction is investigated at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.2-0.6 g/cm3, and in subcritical water at 300 and 350 degrees C. The neat reaction (in the absence of solvent) is also studied for comparison at 0.1 M and 400 degrees C. The ether is found to decompose through (i) the proton-transferred fragmentation to ethane and acetaldehyde and (ii) the hydrolysis to ethanol. Acetaldehyde from reaction (i) is consecutively subjected to the unimolecular and bimolecular redox reactions: (iii) the unimolecular proton-transferred decarbonylation forming methane and carbon monoxide, (iv) the bimolecular self-disproportionation producing ethanol and acetic acid, and (v) the bimolecular cross-disproportionation yielding ethanol and carbonic acid. Reactions (ii), (iv), and (v) proceed only in the presence of hot water. Ethanol is produced through the two types of disproportionations and the hydrolysis. The proton-transferred fragmentation is the characteristic reaction at high temperatures and is much more important than the hydrolysis at densities below 0.5 g/cm3. The proton-transferred fragmentation of ether and the decarbonylation of aldehyde are slightly suppressed by the presence of water. The hydrolysis is markedly accelerated by increasing the water density: the rate constant at 400 degrees C is 2.5 x 10(-7) s(-1) at 0.2 g/cm3 and 1.7 x 10(-5) s(-1) at 0.6 g/cm3. The hydrolysis becomes more important in the ether reaction than the proton-transferred fragmentation at 0.6 g/cm3. In subcritical water, the hydrolysis path is dominant at 300 degrees C (0.71 g/cm3), whereas it becomes less important at 350 degrees C (0.57 g/cm3). Acetic acid generated by the self-disproportionation autocatalyzes the hydrolysis at a higher concentration. Thus, the pathway preference can be controlled by the water density, reaction temperature, and initial concentration of diethyl ether.  相似文献   

2.
The decomposition of 2-propylphenol (PP) at 673 K and a water density of 0–0.5 g cm−3 yielded 2-isopropylphenol (IPP), phenol and 2-cresol. Gas products were methane, carbon dioxide, ethylene and propene. The decomposition was found to occur through rearrangement and alkylation, that is, (1) rearrangement of the propyl functional group from PP to IPP, (2) dealkylation of PP to phenol, (3) dealkylation of PP to 2-cresol. The decomposition probably occurred by a free-radical mechanism. The reaction rate constants of each pathway were determined and it was found that these were invariant over all the water densities studied at the given temperature.  相似文献   

3.
4.
Fourier transform ion cyclotron resonance mass spectrometry has been used to study the temperature and deuterium isotope effects on the methyl cation transfer reaction between protonated dimethyl ether and dimethyl ether to produce trimethyloxonium cation and methanol. From the temperature dependence of this bimolecular reaction it was possible to obtain thermodynamic information concerning the energy barrier for methyl cation transfer for the first time. From the slope of an Arrhenius plot, a value for DeltaH(++) of -1.1 +/- 1.2 kJ mol(-1) was obtained, while from the intercept a value for DeltaS(++) of -116 +/- 15 J K(-1) mol(-1) was derived. This yields a DeltaG(++)(298) value of 33.7 +/- 2.1 kJ mol(-1). All thermodynamic values were in good agreement with ab initio calculations. Rate constant ratios for the unimolecular dissociation forming trimethyloxonium cation and the dissociation re-forming reactants were extracted from the apparent bimolecular rate constant. Attempts at modeling the temperature dependence and isotope effects of the unimolecular dissociation forming trimethyloxonium cation were also made.  相似文献   

5.
Formaldehyde was reacted with both 2,4-dimethylphenol(2,4-xyenol) and 2,6-dimethylphenol(2,6-xylenol), which are model compounds of monofunctional phenols, and the reaction products were subjected to HLC analysis to elucidate details of the formation process and bonding manner of a formal group, which can greatly affect the performance of phenol–formaldehyde resins. As a result, formal compounds of dimethylphenols were successfully separated by HLC. It was further found, as a result of tracing the reactions by HLC, that the formation of a formal group occurs at either position of the ortho and para positions, and that methylol compounds were formed following formation of the formal compounds. Furthermore, as a result of NMR analysis as well as consideration of solvation on the basis of the relative elution volumes of the nonacetylated and acetylated reaction products it was found that the formal group was added to the phenol nuclei.  相似文献   

6.
Dimethyl ether reaction kinetics at high temperature were studied in two different flow reactors under highly dilute conditions. Pyrolysis of dimethyl ether was studied in a variable‐pressure flow reactor at 2.5 atm and 1118 K. Studies were also conducted in an atmospheric pressure flow reactor at about 1085 K. These experiments included trace‐oxygen‐assisted pyrolysis, as well as full oxidation experiments, with the equivalence ratio (ϕ) varying from 0.32 ≤ ϕ ≤ 3.4. On‐line, continuous, extractive sampling in conjunction with Fourier Transform Infra‐Red, Non‐Dispersive Infra‐Red (for CO and CO2) and electrochemical (for O2) analyses were performed to quantify species at specific locations along the axis of the turbulent flow reactors. Species concentrations were correlated against residence time in the reactor and species evolution profiles were compared to the predictions of a previously published detailed kinetic mechanism. Some changes were made to the model in order to improve agreement with the present experimental data. However, the revised model continues to reproduce previously reported high‐temperature jet‐stirred reactor and shock tube results. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet: 32: 713–740, 2000  相似文献   

7.
8.
The potential energy surfaces (PES) of the positive molecular ions of dimethyl ether and dimethyl sulfide were scanned by the LCAO-MO SCF method in the MINDO/3 valence approximation. On the PES of these radical-cations, apart from the minima corresponding to the equilbrium structures, each has a local minimum which belongs to a cyclic structure. The discovered differences in the stereochemical construction of the cyclic structures of the radical-cations (CH3)2O+'and (CH3)2S+' made it possible to explain features of the field fragmentation of their molecular ions. The effect of the external electric field of the ion source on the cyclization and fragmentation stages in the investigated radical-cations was traced.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 1, pp. 76–82, January–February, 1989.  相似文献   

9.
The hydrolysis of methyl bromide with neutral water is performed in the presence and absence of various amines in a batch reactor at different temperatures (50–125 °C). Screening of poly(4-vinylpyridine) as a potential reusable solid amine catalyst showed maximum efficiency. This significant enhancement in efficiency is due to the capture of HBr by solid PVP and remains phase-separated driving the reaction forward. The major advantage of this process is that the polymer can be easily regenerated and reused without loss of activity making it a very effective catalyst for the conversion of methyl halides to methanol and dimethyl ether.  相似文献   

10.
11.
IR spectra of the formaldehyde complexes of methanol and dimethyl ether in solid nitrogen at 20 K are reported. Dimethyl ether forms a non hydrogen bonded complex, analogous to a previously studied dimethyl sulfide-formaldehyde complex. Methanol forms a hydrogen bonded complex with formaldehyde and in addition appears to form another complex probably with a structure similar to that of the dimethyl ether-formaldehyde complex.  相似文献   

12.
Criegee intermediates are thought to play roles in atmospheric chemistry, including OH radical formation, oxidation of SO2, NO2, etc. CH2OO is the simplest Criegee intermediate, of which the reactivity has been a hot topic. Here we investigated the kinetics of CH2OO reaction with dimethyl sulfoxide (DMSO) under 278–349 K and 10–150 Torr. DMSO is an important species formed in the oxidation of dimethyl sulfide in the biogenic sulfur cycle. The concentration of CH2OO was monitored in real-time via its mid-infrared absorption band at about 1,286 cm−1 (Q branch of the ν4 band) with a high-resolution quantum cascade laser spectrometer. The 298 K bimolecular rate coefficient was determined to be k298 = (2.3 ± 0.3) × 10−12 cm3/s at 30 Torr with an Arrhenius activation energy of −3.9 ± 0.2 kcal/mol and a weak pressure dependence for pressures higher than 30 Torr (k298 = (2.8 ± 0.3) × 10−12 cm3/s at 100 Torr). The reaction is speculated to undergo a five-membered ring intermediate, analogous to that of CH2OO with SO2. The negative activation energy indicates that the rate-determining transition state is submerged. The magnitude of the reaction rate coefficient lies in between those of CH2OO reactions with (CH3)2CO and with SO2.  相似文献   

13.
This paper reports measurements of the solubility of water in liquid and supercritical fluid mixtures of dimethyl ether and carbon dioxide. The measurements were made by extracting water under saturation conditions using premixed liquid dimethyl ether–carbon dioxide mixtures. Results are reported for temperatures of 313.8 K and 333.3 K at 9.0 MPa and 15.0 MPa. Results are fitted to the Peng–Robinson cubic equation of state with mixing rules according to Wong and Sandler, using binary interaction parameters fitted to the literature data for the respective binary systems: dimethyl ether–water; dimethyl ether–carbon dioxide; and carbon dioxide–water. Liquid densities for dimethyl ether–carbon dioxide mixtures, measured using a coriolis flow instrument, are also reported.  相似文献   

14.
A study where the Hantzsch reaction is used to produce the chemical derivatization of formaldehyde in a supercritical medium is presented in this paper. Pressure, temperature and other parameters such as static and dynamic extraction time must be optimized to increase the yield of this kinetically controlled reaction. A 2(5-1) (resolution V) factorial design was used to study the significant parameters affecting the supercritical process in terms of resolution and sensitivity. A subsequent central composite design was employed to find the conditions of maximum response. Ultraviolet-visible spectrophotometry was used as the detection technique. The optimum conditions were used for the determination of formaldehyde in real finger-paints by means of the previous addition of known quantities of this analyte to the paint. Results were compared with those obtained with supercritical fluid extraction and subsequent chemical derivatization and an improvement of sensitivity as well as a reduction of time of analysis, solvent waste and reagents consumption were observed.  相似文献   

15.
Nearly complete gasification of organic compounds has been achieved by stoichiometrically insufficient amounts of RuO2 in supercritical water (SCW) to provide CH4, CO2 and H2, all the hydrogen atoms of which originate from water, and the catalytic effect of RuO2 results from a redox couple of Ru(IV)/Ru(II) induced by SCW.  相似文献   

16.
The molecular structures, the energies of complex formation, and the vibrational spectra of the binary molecular complexes of SiF4 with water, methanol, and dimethyl ether were calculated by the ab initio MP2 method with the basis sets up to 6-311++G(2d,2p). In the complexes, which have been detected previously by IR spectroscopy in low-temperature (12—15 K) inert matrices, the five-coordinate Si atom is in a distorted trigonal-bipyramidal environment, which is formed through the donor-acceptor interaction of the O atom with the Si atom and is additionally stabilized by the H...F hydrogen bonds.  相似文献   

17.
The cycloaddition mechanism of the reaction between singlet dimethyl germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD (T)//MP2/6-31G* method. From the potential energy profile, we predict that the cycloaddition reaction between singlet dimethyl germylidene and formaldehyde has two dominant reaction pathways. First dominant reaction pathway consists of three steps: (1) the two reactants (R1, R2) firstly form an intermediate INT1a through a barrier-free exothermic reaction of 43.0 kJ/mol; (2) INT1a then isomerizes to a four-membered ring compound P1 via a transition state TS1a with an energy barrier of 24.5 kJ/mol; (3) P1 further reacts with formaldehyde(R2) to form a germanic heterocyclic compound INT3, which is also a barrier-free exothermic reaction of 52.7 kJ/mol; Second dominant reaction pathway is as following: (1) the two reactants (R1, R2) firstly form a planar four-membered ring intermediate INT1b through a barrier-free exothermic reaction of 50.8 kJ/mol; (2) INT1b then isomerizes to a twist four-membered ring intermediate INT1.1b via a transition state TS1b with an energy barrier of 4.3 kJ/mol; (3) INT1.1b further reacts with formaldehyde(R2) to form an intermediate INT4, which is also a barrier-free exothermic reaction of 46.9 kJ/mol; (4) INT4 isomerizes to a germanic bis-heterocyclic product P4 via a transition state TS4 with an energy barrier of 54.1 kJ/mol.  相似文献   

18.
19.
The kinetics of the reaction of O + CH3OCH3 were investigated using fast-flow apparatus equipped with ESR and mass-spectrometric detection. The concentration of O(3P) atoms to CH3OCH3 was varied over an unusually large range. The rate constant for reaction was found to be k = (5.0 ± 1.0) × 1012 exp [(?2850 ± 200/RT)] cm3 mole?1 sec?1. The reaction O + CH3OH was studied using ESR detection. Based on an assumed stoichiometry of two oxygen atoms consumed per molecule of CH3OH which reacts, we obtain a value of k = (1.70 ± 0.66) × 1012 exp [(?2,280 ± 200/RT)] cm3 mole?1 sec?1 for the reaction The results obtained in this study are compared with the results from other workers on these reactions. The observation of essentially equal activation energies in these two reactions is indicative of approximately equal C? H bond strengths in CH3OCH3 and CH3OH. This is in agreement with recent measurements of these bond energies.  相似文献   

20.
The free radical dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) has been carried out in supercritical carbon dioxide (scCO2) and compressed liquid DME using several surfactants. The polymerization are performed in the presence of fluorine-based poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl acrylate) [poly(HDFDA)], poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) [poly(HDFDMA)], or poly(HDFDMA-co-MMA) and siloxane-based PDMS-g-pyrrolidonecarboxylic acid (Monasil PCA™) or PDMS modified surfactants, SS-5050K™ and KF6017™ as polymerization surfactants. When scCO2 was used as a polymerization medium, the PHEMA were heavily agglomerated. However, the spherical and relatively uniform poly(2-hydroxyethyl methacrylate) (PHEMA) particles could be produced even at 20 bar, with a narrow particle size distribution in compressed liquid DME. It was observed that fluorine-based surfactants were not a good surfactant as siloxane-based surfactants for the dispersion polymerization of HEMA. The average particle size of PHEMA was shown to be dependent on the type of the surfactant, the amount of the surfactant and initiator added to the system. The effect of two continuous phases, which are scCO2 and compressed liquid DME, as a polymerization medium, the surfactant types and the concentration, initiator concentration, and monomer concentration on the morphology and size of the polymer particles was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号