首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calix[4] open-chain crown ether, 5,11,17,23-tetra-tert-butyl-25,27-di(2-allyloxyethoxyl)-26,28-dihydroxycalix[4]arene was synthesized and used for preparation of solid-phase microextraction (SPME) fibers of enhanced extraction efficiency. The new SPME coating made from calix[4] open-chain crown ether and hydroxyl-terminated silicone oil was developed with the aid of vinyltriethoxylsilane as bridge using sol-gel method and cross-linking technology. The efficiency of the novel fiber in the extraction of polar aromatic and aliphatic compounds, such as phenols, alcohols, and volatile fatty acids, was also investigated. Due to the introduction of the polar open-chain crown ether in calix[4]arene molecules, the calix[4] open-chain crown ether fiber showed much better selectivity and sensitivity to these polar compounds in comparison with calix[4]arene fiber. It also had superior extraction efficiency when compared to commercial poly(dimethylsiloxane)-divinylbenzene and polyacrylate fibers. Parts per billion to parts per trillion level detection limits were achieved for most of the analytes through SPME in conjunction with GC and flame ionization detector. The linear ranges were two to four orders of magnitude, and the RSD values were below 7% for all analytes. The novel fiber was applied to determine volatile alcohols and fatty acids in wine samples. The volatile-free wine prepared in this work was used to assure similar chemical environment for analytes in both calibration solutions and in real wine samples, thus compensating for possible matrix interferences. The established internal standard method using 4-methyl-2-pentanol as internal standard showed satisfactory accuracy and precision.  相似文献   

2.
Flos Chrysanthemi Indici is a common traditional Chinese medicine (TCM). In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was developed for quality assessment of Flos Chrysanthemi Indici from different growing areas in China. SPME parameters such as extraction fibers, extraction temperature, extraction time and sample mass were investigated to achieve identical results to those obtained by the steam distillation (SD). The selected SPME conditions were as follows: SPME fiber coated with 65-microm PDMS/DVB, extraction temperature of 60 degrees C, extraction time of 30 min and sample mass of 1.0 g. Furthermore, four active compounds (eucalyptol, camphor, borneol and bornyl acetate) presented in the TCM were applied to evaluating the quality of Flos Chrysanthemi Indici from 20 various areas. The quality assessment was successfully performed to compare the similarity value (S) between different sample vector of Flos Chrysanthemi Indici and the standard profile vector (SPV). The results showed that the proposed HS-SPME-GC-MS was an alternative technique for quality assessment of Flos Chrysanthemi Indici samples.  相似文献   

3.
Solid-phase microextraction (SPME) with a disposable ionic liquid (IL) coating was developed for headspace extraction of benzene, toluene, ethylbenzene, and xylenes (BTEX) in paints. The SPME fiber was coated with IL prior to every extraction, then the analytes were extracted and desorbed on the injection port of gas chromatography, and finally the IL coating on the fiber was washed out with solvents. The coating and washing out of IL from the fiber can be finished in a few minutes. This disposable IL-coated fiber was applied to determine BTEX in water-soluble paints with results in good agreement with that obtained by using commercially available SPME fibers. For all the four studied paints samples, the benzene contents were under the detection limits, but relatively high contents of toluene, ethylbenzene and xylenes (56-271 microg g(-1)) were detected with spiked recoveries in the range of 70-114%. Compared to the widely used commercially available SPME fibers, this proposed disposable IL-coated fiber has much lower cost per determination, comparable reproducibility (RSD < 11%), and no carryover between each determination. Considering that IL possess good extractability for various organic compounds and metals ions, and that task-specific IL can be designed and synthesized for selective extraction of target analytes, this disposable IL coating SPME might has great potential in sample preparation.  相似文献   

4.
The application of a manual operated solid-phase microextraction (SPME)-HPLC interface is discussed for the analysis of thermally labile analytes in aqueous matrices. The technique has been applied on-site at a flooded rice field to demonstrate its potential for real time extraction of the herbicide profoxydim. Thus, compounds which would otherwise easily degrade in the aqueous matrices within hours or days could be determined more accurately. The fibers were shipped back to the laboratory with express delivery where the target analyte was desorbed from the fiber and determined by HPLC-UV analysis. The SPME method was characterized by significant ruggedness where conventional techniques such as liquid-liquid extraction and solid-phase extraction require additional shipping and handling costs and time-consuming multiple sample preparation steps. In general, any delay in shipping the aqueous samples to the laboratory has the potential for sample degradation and a loss in accuracy when using non on-site extraction techniques. Fifty microm Carbowax-templated resin coatings were most suitable for coupling SPME to HPLC in order to achieve a high sensitivity for polar analytes. The SPME technique was characterized by a good sensitivity and a precision less than 10% RSD. The SPME-LC-UV method was linear over at least three orders of magnitude while achieving a limit of detection in the lower microg/l range. The on-site SPME method has shown significantly increased accuracy. Profoxydim was determined at concentrations of ca. 180 microg/l 3 h after an application on a flooded bare soil field.  相似文献   

5.
LUS‐1 typed nanoporous silica particles were synthesized and silylated with hexamethyldisilazane and investigated as a highly porous fiber coating for solid‐phase microextraction (SPME). The pore size distribution of the prepared Sil‐LUS‐1 was still typical of MCM‐41 and centered at 3 nm with a specific surface area of 720 m2g?1. The SPME fiber was prepared by liming the material on a copper wire. The extraction efficiency of the new fiber was compared with a commercial PDMS fiber for headspace extraction and GC‐MS analysis of phenol, 4‐nitrophenol, 2,4‐dichlorophenol and 4‐chlorophenol in water samples. Due to the high porosity of the prepared fiber it showed a higher sensitivity and better selectivity for the extraction of the target compounds. For optimization of different factors affecting the extraction efficiency, a simplex optimization method was used. The relative standard deviation for the measurements by one fiber was better than 7% for five replicates and the fiber‐to‐fiber reproducibility was about 10% for five fabricated fibers. Detection limits in the range of 0.002 to 0.026 μg mL?1 were obtained for the phenolic compounds. The fiber was successfully applied for the determination of phenolic compounds in natural water samples.  相似文献   

6.
田怀香  王璋  许时婴 《色谱》2006,24(2):177-180
采用顶空固相微萃取法(HS-SPME)制备样品,利用气相色谱-质谱法(GC-MS)分离鉴定了金华火腿的挥发性风味物质。实验中筛选了固相微萃取纤维头,优化了固相微萃取的操作条件。用75 μm碳分子筛/聚二甲基硅氧烷(CAR-PDMS)纤维头,于60 ℃下对金华火腿样品顶空吸附40 min,于250 ℃下解吸2 min,采用GC-MS对解吸物进行分离鉴定。金华火腿样品的分析结果表明,其挥发性风味物质中含量较高的是醛、酸和酮类化合物,还有一些含硫或杂环化合物。  相似文献   

7.
A field expedient analytical method for detecting the chemical warfare agent (CWA) sulfur mustard as a soil contaminant was developed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). Five commercially available SPME fibers were investigated to determine the optimal fiber, and extraction conditions. Polyacrylate and carbowax-divinylbenzene fiber coatings gave a statistically indistinguishable and best response compared to the other three types examined in a simple system studied without soil. The polyacrylate fiber coating was selected for study of a system in which sulfur mustard was spiked to an agricultural soil (Standard Reference Material 2709, San Joaquin type). With soil samples, the greatest sensitivity occurred by the addition of deionized water to spiked soil and extraction at ambient temperature for 20 min or longer. SPME sampling with GC-MS analyses afforded good reproducibility (relative standard deviation between 2 and 10%), and analyte concentrations as low as 237 ng/g were detected in soil (total ion chromatograms). As completed here, total time for sampling and analysis was just under 1 h, and use of organic solvents or special sample introduction equipment was avoided.  相似文献   

8.
A method was developed for the analysis of volatile polar compounds in a water matrix using open cap vials Solid Phase Micro-Extraction (SPME) and Capillary Gas Chromatography (CGC). Both SPME techniques – direct sampling and headspace – were tested. Optimization of experimental conditions – exposure time, desorption time, with headspace SPME in addition the influence of the temperature and ionic strength of the sample solution on compound sorption, and finally GC response – were investigated. The analytes were extracted by directly immersing the 85 μm polyacrylate fiber in the aqueous sample or in the headspace. The linear range of the preconcentration process and the precision were examined. The amount of polar analytes sorbed on the fiber was determined and was found to be concentration dependent; it amounted to 0.014–0.64% in the concentration range of 0.00425–425 ppm studied in aqueous solution for direct sampling SPME and to 0.011–2.76% for solutions of concentration 0.0425–255 ppm for headspace SPME. The limits of determination were ascertained. Headspace SPME was applied to the analysis of real-life samples.  相似文献   

9.
The aroma profile of cocoa products was investigated by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS). SPME fibers coated with 100 μm polydimethylsiloxane coating (PDMS), 65 μm polydimethylsiloxane/divinylbenzene coating (PDMS-DVB), 75 μm carboxen/polydimethylsiloxane coating (CAR-PDMS) and 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane on a StableFlex fiber (DVB/CAR-PDMS) were evaluated. Several extraction times and temperature conditions were also tested to achieve optimum recovery. Suspensions of the samples in distilled water or in brine (25% NaCl in distilled water) were investigated to examine their effect on the composition of the headspace. The SPME fiber coated with 50/30 μm DVB/CAR-PDMS afforded the highest extraction efficiency, particularly when the samples were extracted at 60 °C for 15 min under dry conditions with toluene as an internal standard. Forty-five compounds were extracted and tentatively identified, most of which have previously been reported as odor-active compounds. The method developed allows sensitive and representative analysis of cocoa products with high reproducibility. Further research is ongoing to study chocolate making processes using this method for the quantitative analysis of volatile compounds contributing to the flavor/odor profile.  相似文献   

10.
The preparation and applicability of solid phase microextraction (SPME) fibers coated with a sol-gel organically modified silica based on 3-aminopropyltrimethoxysilane and polydimethylsiloxane (APTMS/PDMS) are described here. Micrographs of the coated fibers revealed a rugous surface; the thickness of the coating was estimated to be less than 30 microm. The APTMS/PDMS fibers were tested with synthetic samples and compared to commercial fibers for headspace SPME analysis of beer. Extraction and desorption using the APTMS/PDMS fibers were faster, which is typical for sol-gel SPME fibers. For polar and semi-polar compounds on beer headspace, the extraction efficiencies of the APTMS/PDMS fiber were superior to those of conventional fibers. The APTMS/PDMS fiber was found to be capable of extracting a broad range of analytes, including highly polar acidic species such as organic acids.  相似文献   

11.
Jiangang He  Peng Dou 《Talanta》2009,79(3):746-3288
A new format of solid phase microextraction (SPME), boronate affinity SPME, was proposed for the first time for covalent extraction of cis-diol containing biomolecules. This new SPME format is based on the reversible complex formation between boronic acids and 1,2- and 1,3-cis-diols. The complex formation and dissociation can be facilely controlled by changing pH. An extracting phase of poly-3-aminophenylboronate (polyAPBA) electrochemically deposited on a metal wire was employed to demonstrate the concept of this new methodology. Catechol and riboflavin were used as the test analytes, and the SPME extraction was combined off-line with high-performance liquid chromatographic (HPLC) separation followed by UV absorbance or fluorescence detection. Fundamental aspects, such as selectivity, extraction/desorption equilibrium, linearity, effect of competing compounds, reproducibility and life-time, were first investigated. Then the developed method was applied to beer samples since the content of riboflavin plays an important role in the flavor stability of beverages. Excellent performance of the SPME fibers was observed for both standard and real samples. Particularly, the expected excellent features of the polyAPBA extracting phase were experimentally verified, which include specific selectivity, eliminated matrix effect and manipulable capture/release. The new methodology of SPME can be a promising tool since a lot of 1,2- and 1,3-cis-diol-containing compounds are of great biological importance.  相似文献   

12.
Applications of solid-phase microextraction in food analysis   总被引:21,自引:0,他引:21  
Food analysis is important for the evaluation of the nutritional value and quality of fresh and processed products, and for monitoring food additives and other toxic contaminants. Sample preparation, such as extraction, concentration and isolation of analytes, greatly influences the reliable and accurate analysis of food. Solid-phase microextraction (SPME) is a new sample preparation technique using a fused-silica fiber that is coated on the outside with an appropriate stationary phase. Analyte in the sample is directly extracted to the fiber coating. The SPME technique can be used routinely in combination with gas chromatography (GC), GC–mass spectrometry (GC–MS), high-performance liquid chromatography (HPLC) or LC–MS. Furthermore, another SPME technique known as in-tube SPME has also been developed for combination with LC or LC–MS using an open tubular fused-silica capillary column as an SPME device instead of SPME fiber. These methods using SPME techniques save preparation time, solvent purchase and disposal costs, and can improve the detection limits. This review summarizes the SPME techniques for coupling with various analytical instruments and the applications of these techniques to food analysis.  相似文献   

13.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

14.
Kimchi is a traditional fermented vegetable, known for its complex flavor. Herein, we compared compounds related to the kimchi flavor, identified by gas chromatography-mass spectrometry (GC-MS) with the developed solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE) techniques. Although headspace-solid phase microextraction (HS-SPME) detected more volatile compounds than nondestructive-headspace-solid-phase microextraction (ND-HS-SPME), those identified by ND-HS-SPME were considered closely related to the flavor of the intact kimchi. Furthermore, direct immersion-stir bar sorptive extraction (DI-SBSE) detected more volatile and nonvolatile compounds than headspace-stir bar sorptive extraction (HS-SBSE), while more sulfur compounds were identified by HS-SBSE. Therefore, we recommend the use of the HS-SPME method using a divinylbenzene/carboxen/polydimethylsiloxane fiber for identifying compounds related to the kimchi flavor. In addition, principal component analysis showed ND-HS-SPME and HS-SBSE to be closely clustered. Overall, we estimated that the samples obtained via the nondestructive sample preparation emits fewer polar volatile flavor compounds than those obtained using the destructive sample preparation. Considering the findings presented herein, we believe that this study contributes to optimizing the flavor analysis of kimchi and other fermented vegetables.  相似文献   

15.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   

16.
The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid–liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.  相似文献   

17.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

18.
Solid-phase microextraction (SPME) is a fast, solvent-free alternative to conventional sample preparation techniques. This technique involves exposing a fused silica fiber that has been coated with a stationary phase to an aqueous solution or its headspace to selectively extract compounds from their matrix. The fiber is then removed, and the analytes are thermally desorbed in the injector of a gas chromatograph. By sampling from the headspace above sample matrices, SPME can be used to extract target analytes from very complex matrices. In this study, SPME in the headspace is used in developing a method for the dye 1-methylaminoanthraquinone (MAAQ) and two lachrymators: orthochlorobenzalmalononitrile (CS) (tear gas) and 2-chloroacetophenone (CN) (tear gas). The focus is to develop a robust method to minimize sample preparation and to reduce matrix interferences encountered by other extraction techniques. In developing the method, several fibers are studied for their affinity for the compounds of interest. Although this method is developed for qualitative analysis, the extraction time and temperature profile are thoroughly investigated to provide the optimal conditions. The use of a salt solution is evaluated to increase the partitioning of MAAQ into the headspace. Using this method, qualitative extraction is achieved for the analysis of CN, CS, and MAAQ from its matrices. CN and CS are extracted in less than 5 min, though MAAQ needed more than 15 min to achieve a reasonable response. If more sensitivity is required, the use of a salt solution increases the response of MAAQ by 90-fold.  相似文献   

19.
Solid-phase microextraction (SPME) is a powerful technique commonly used in sample preparation for extraction/preconcentration of analytes from a wide variety of samples. Among the trends in improving SPME applications, current investigations are focused on the development of novel coatings able to improve the extraction efficiency, sensitivity, and thermal and mechanical stability, within other properties, of current commercial SPME fibers. Metal-organic frameworks (MOFs) merit to be highlighted as promising sorbent materials in SPME schemes. MOFs are porous hybrid materials composed by metal ions and organic linkers, presenting the highest surface areas known, with ease synthesis and high tuneability, together with adequate chemical and thermal stability. For MOF based-SPME fibers, it results important to pretreat adequately the SPME supports to ensure the correct formation of the MOF onto the fiber or the attachment MOF-support. This, in turn, will increase the final stability of the fiber while generating uniform coatings. This review provides a critical overview of the current state of the use of MOFs as SPME coatings, not only highlighting the advantages of these materials versus commercial SPME coatings in terms of stability, selectivity, and sensitivity; but also insightfully describing the current methods to obtain reproducible MOF-based SPME coatings.  相似文献   

20.
Solid-phase microextraction (SPME) is a rapid and simple analytical technique which uses coated fused-silica fibers to extract analytes from aqueous samples. This study develops a method of SPME analysis for seven pyrethroids, including fenpropathrin, lambda-cyhalothrin, deltamethrin, fenvalerate, permethrin, tau-fluvalinate and bifenthrin in groundwater samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-LC-PIF-FD). To perform the SPME, a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used for the extraction of the pesticides from groundwater samples. The main factors affecting the SPME process, such as extraction time, stirring rate, extraction temperature, pH and the desorption process were studied. The use of photochemically induced fluorescence for detection improved sensitivity and selectivity. The limits of quantification (LOQs) obtained in the matrix, with respect to EURACHEM Guidance, varied between 0.03 and 0.075 microgL(-1). Relative recoveries ranged from 92 to 109% and relative standard deviations values ranged from 2 to 9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号