首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

2.
This work presents the electrochemical oxidation of the antioxidant astaxanthin on a glassy‐carbon electrode (GCE) and its amperometric determination in salmon samples using a batch‐injection analysis (BIA) system. The proposed BIA method consisted of 80‐µL a fast microliter injection of sample at 193 µL s?1 on the GCE immersed in the electrolyte, a mixture of acetone, dichloromethane, and water (80 : 10 : 10 v/v), containing 0.1 mol L?1 HClO4. Advantages include high precision (RSD of 2.4 %), sample throughput of 240 h?1, and low detection limit (0.3 µmol L?1 that corresponds to 0.1 µg g?1) for the analysis of acetone extracts of salmon samples. Recovery values between 83 and 97 % attested the accuracy of the method.  相似文献   

3.
This work presents the lead determination in aviation (bio)fuels using disposable screen‐printed gold electrodes (SPGEs) adapted on a batch‐injection cell associated with a micropipette for portable analysis. The method involves injections of 200 µL of sample or standard solutions at controlled dispensing rate (4.8 µL s?1) during deposition step (?550 mV for 90 s), followed by anodic‐stripping voltammetry. Either samples treated by sonication or dry‐ashing can be analyzed with detection limits of 0.0071 and 0.0008 µg g?1 Pb, respectively. A single SPGE can be applied for 60 consecutive measurements (or 120 for samples dry‐ashed). The ultrasound‐assisted treatment is faster, safer, and easily adapted for on‐site analyses, especially considering the portable characteristics of commercially‐available potentiostats and batch‐injection analysis cell using SPGEs.  相似文献   

4.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

5.
This work reports the highly‐sensitive amperometric determination of free glycerol in biodiesel at a gold electrode adapted in a flow‐injection analysis (FIA) cell. The amperometric method involved the continuous application of three sequential pulses to the working electrode (+250 mV, +700 mV, and ?200 mV, for 100 ms each). This sequence of potential pulses eliminated electrode passivation and dramatically increased the analytical signal. The proposed FIA‐amperometric method presented low relative standard deviation between injections (1.5 %, n=15), high analytical frequency (85 h?1), satisfactory recovery values (93–118 %) for spiked samples, wide linear range (from 1 to 300 µmol L?1), and low detection limit (0.5 µmol L?1).  相似文献   

6.
This work describes the sequential determination of amlodipine (AML) and atenolol (ATN) by batch injection analysis (BIA) with pulsed amperometric detection (BIA‐PAD). Boron doped diamond (BDD) was used as working electrode. AML was detected at +1.00 V and ATN at +1.65 V. The proposed BIA method is simple, robust, precise (RSD <3.2 %; n=10), presents high analytical frequency (>70 injections h?1), generates reduced volume of waste (without use of organic solvent) and requires minimal sample manipulation (dissolution and dilution in electrolyte). The limits of detection were 0.074 and 0.073 µmol L?1 for AML and ATN, respectively. The results obtained with the proposed BIA method were compared to those obtained by HPLC and similar results were obtained (at 95% of confidence level).  相似文献   

7.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

8.
A supramolecular Nickel (II) porphyrin complex containing four pyridyl‐bis(2,2′‐bipyridyl)chloro ruthenium meso substituents was submitted to successive voltammetric cycles in high alkaline media to produce a supramolecular matrix with Nickel centers linked by µ‐peroxo bridges, producing a highly stable thin film able to act as redox mediator for electrocatalytic oxidation of folic acid. The characterization of electrode surface material was performed by Scanning Electron Microscopy and Electrochemical Impedance Spectroscopy. The modified electrode was inserted into a batch injection electrochemical cell used for the rapid and precise quantification of folic acid in pharmaceutical products. The favorable hydrodynamic conditions provided by amperometry‐BIA association allowed a very high throughput with good linear range (1 to 200 µmol L?1) and low detection limit (7.37×10?7 mol L?1). The electrochemical method was applied to the quantification of folic acid in different tablet samples. The results were comparable with values indicated by the manufacturer and those found using high HPLC according to the Brazilian Pharmacopoeia; commercial samples were submitted to a procedure in order to remove lactose of tablets, since carbohydrates act as interfering species. This procedure together with the electrochemical method showed to be simple, rapid, efficient and an appropriate alternative for quantifying this compound in real samples.  相似文献   

9.
《Electroanalysis》2018,30(1):20-23
This work presents a simple electrochemical method for Hg determination in fish oil capsules using anodic stripping voltammetry (ASV) on a screen‐printed gold electrode (SPGE). Samples were treated in an ultrasonic bath for 15 min in the presence of a 1 : 1 (v/v) concentrated HCl/H2O2 mixture at room temperature. The limit of detection (LOD) was estimated as 0.25 μg L−1 (corresponding to 7.6 μg kg−1 of oil) with a linear range between 5 and 400 μg L−1 (90 s of deposition time). The analyzed fish oil samples presented Hg concentration below the LOD value. Recovery values for samples spiked with oil standard containing Hg ranged from 95 to 105 %. The method is precise (inter‐day and intra‐day RSD<4 % for n=3) as well as the SPGE sensors (RSD=4.3 %, n=3), which were used continuously (around 100 analyses without replacement) under such oxidation media. The proposed method is feasible to be applied for on‐site determinations due to the portability of sensing and sample treatment approaches.  相似文献   

10.
This paper describes the development of a methodology for quantification of Cu(II), Pb(II), Cd(II) and Zn(II) in waters and sediments by anodic stripping voltammetry (ASV) automated by Sequential Injection Analysis (SIA) using a graphite screen printed sensor modified with mercury. Determinations were made by standard addition automated by the SIA system. The limits of detection and quantification were, respectively, 1.3 and 4.3 µg L?1 for Cu(II), 1.4 and 4.6 µg L?1 for Pb(II), 0.6 and 1.8 µg L?1 for Cd(II) and 4.2 and 14 µg L?1 for Zn(II). These limits were obtained for a sample volume of 1000 µL, flow rate of 10 µL s?1 (during the deposition step), and utilizing 3 flow reversals (volume of reversion=950 µL), totalizing a deposition time of 315 s. The potentiostat worked synchronically with the SIA system applying the conditioning potential of ?0.1 V vs. pseudo reference of Ag (100 s), deposition potential of ?1.0 V for Cu(II), Pb(II) and Cd(II) or ?1,3 V for Zn(II), square wave frequency of 100 Hz, potential step of 6 mV and pulse height of 40 mV. For quantification of Zn(II) in sediment extracts, deposition of Ga0 on the working electrode was necessary to avoid the formation of intermetallic between Zn0 and Cu0. The accuracy of the method was assessed by spike and recovery experiments in water samples which resulted recovery rates near 100 % of the spiked concentrations. Recoveries of concentrations in the certified sediment sample CRM‐701 undergoing the three steps sequential extraction procedure of BCR varied from 71.7 % for Zn(II) in the acetic acid extract to 112.4 % for Cu(II) in the oxidisable fraction, confirming that the standard addition approach corrected the matrix effects in the complex samples of sediment extracts.  相似文献   

11.
An electrodeposition oxygen‐incorporated gold‐modified screen‐printed carbon electrode (AuOSPE) was fabricated to determine the sulfite content in hair waving products. The AuOSPE showed an electrocatalytic current for sulfite at +0.4 V (vs. Ag/AgCl). Compared with a gold screen‐printed electrode (AuSPE), the AuOSPE showed a higher electrocatalytic current. The increase in the electrocatalytic current was ascribed to the increase of the oxygen incorporated with gold atom on AuOSPE. The AuOSPE coupled with a flow injection analysis (FIA) system showed excellent oxidation current for sulfite in a 0.1 mol L?1 phosphate buffer solution (PBS), pH 6.0. The linear working range for determining the sulfite content was 0.05 to 1200 mg L?1 (0.625 µmol L?1 to 15.00 mmol L?1) with a calculated detection limit of 0.03 mg L?1 (0.375 µmol L?1) (DL, S/N=3). Relative standard deviations (RSD) of 3.03 %, 2.30 % and 4.26 % were calculated for consecutive injections (n=12) of 20, 300 and 900 mg L?1 sulfite, respectively. The amount of sulfite in two hair waving products was determined by the proposed method and a standard iodometric method. The recoveries ranged from 96.18 % to 105.61 %. The AuOSPE showed high sensitivity, selectivity, stability and reproducibility for sulfite.  相似文献   

12.
This article highlights the potential use of multi‐walled carbon‐nanotube modified screen‐printed electrodes (SPEs) for the amperometric sensing of ciprofloxacin and compares the association of batch‐injection analysis (BIA) and flow‐injection analysis (FIA) with amperometric detection. Both analytical systems provided precise (RSD<5 %) and sensitive determination of ciprofloxacin (LOD<0.1 μmol L?1) within wide linear range (up to 200 μmol L?1). Accuracy of both methods was attested by recovery values (93–107 %) and comparison with capillary electrophoresis. The BIA system is completely portable (especially due to association with SPEs) and provided faster analyses (130 h?1) and more sensitive detection than the FIA system due to the higher flow rates of injection.  相似文献   

13.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

14.
Anodic stripping voltammetry combined with sequential injection analysis (ASV‐SIA) was selected to examine the use of bismuth‐ and antimony‐film plated glassy carbon electrodes under comparable conditions for the determination of Pb(II) and Cd(II) ions. Of interest were the conditions for film deposition, as well as the composition of sample/carrier solutions, including concentrations of Sb(III) or Bi(III) and HCl. Then, by the optimized procedure, one could determine Pb(II), Cd(II), and Zn(II) ions at the low µg L?1 level and ASV‐SIA configuration with both electrodes tested on analysis of a water sample.  相似文献   

15.
This work reports the utility of an iridium microwire plated in situ with a bismuth film for the simultaneous determination of Pb(II) and Cd(II) by square‐wave anodic stripping voltammetry (SWASV). The experimental variables (concentration of the bismuth plating solution, preconcentration potential, accumulation time) were investigated. The limit of detection was 1 µg L?1 for Pb(II) and 1.5 µg L?1 for Cd(II) (at 300 s of preconcentration) and the % relative standard deviations were lower than 4.9 % and 5.5 %, respectively, at the 20 µg L?1 level (n=8). In addition, a study was made of coating the iridium‐based bismuth‐film microsensor with a film of Nafion for operation in the presence of surfactants. Finally, the electrode was applied to the determination of Pb(II) and Cd(II) in wastewater and tapwater samples.  相似文献   

16.
A three‐sensor array consisting of a graphite‐epoxy composite electrode (GEC), 4‐carboxybenzo‐18‐crown‐6‐GEC and 4‐carboxybenzo‐15‐crown‐5‐GEC was employed for the simultaneous determination of Cd(II), Pb(II) and Hg(II) by differential pulse anodic stripping voltammetry (DPASV). Sensors were firstly studied for the determination of Hg(II); secondly, peak current responses confirmed that all sensors showed differentiated response for the three considered metals. A response model was developed to resolve mixtures of Cd(II), Pb(II) and Hg(II) at the µg L?1 level; Discrete Wavelet Transform was selected as preprocessing tool and artificial neural network used for the modelling of the obtained responses.  相似文献   

17.
A simple, rapid fabricated and sensitive modified electrode for detection of As(III) in alkaline media was proposed. The modified electrode was prepared by co‐electrodeposition of manganese oxides (MnOx) and gold nanoparticles (AuNPs) on the glassy carbon electrode (GCE) with cyclic voltammetry. Linear sweep anodic stripping voltammetry (LS‐ASV) was employed for the determination of arsenic (III) without interference from Cu(II), Hg(II), and other coexisting metal ions. A lower detection limit of 0.057 µg L?1 (S/N=3) were obtained with a accumulation time of 200 s. The proposed method was successfully applied to determine arsenic (III) in real water samples with satisfactory recoveries.  相似文献   

18.
Complexing polymer‐coated electrodes have been synthesized by oxidative electropolymerization of ethylenediamine tetra‐N‐(3‐pyrrole‐1‐yl)propylacetamide (monomer L ). The presence of four polymerizable pyrrole fragments on the same EDTA skeleton was thought to confer enhanced rigidity and controlled dimensionality to the resulting complexing materials, which were used for the electrochemical detection of Hg(II), Cu(II), Pb(II) and Cd(II) ions by means of the chemical preconcentration‐anodic stripping technique. The polyamide electrode material showed particularly a significant selectivity towards mercury ions, even in the presence of a large excess of other metal cations. Moreover, the use of imprinted polymer‐coated electrodes prepared by electropolymerization of L in the presence of metal cations turned out to significantly improve the detection limits, down to 5×10?10 mol L?1 for Hg(II) and Cu(II) species.  相似文献   

19.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

20.
In this work, we present a simple homemade batch‐injection analysis cell for screen‐printed electrodes (BIA‐SPE). The potential of the proposed system for on‐site analysis was demonstrated by the determination of carbendazim, catechol, and hydroquinone in tap water. The system provided reduced injection volume (30 µL), high analytical frequency (≈200 h?1) and low detection limits (nanomolar level). Moreover, the BIA‐SPE cell presented better stability (RSD≈0.4 %) than a conventional flow injection cell for SPE (RSD≈5.0 %) in organic media. The proposed homemade BIA‐SPE cell is very simple, inexpensive and can be easily constructed in any laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号