首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

2.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

3.
Microhaplotypes are a new promising type of forensic genetic marker. Without the interference of stutter and high mutation rates as for STRs, and with short amplification lengths and a higher degree of polymorphism than single SNP, microhaplotypes composed of two SNPs, SNP–SNP, have a strong application potential. Currently, the most common method to detect microhaplotypes is massive parallel sequencing. However, the cost and extensive use of instruments limit its wide application in forensic laboratories. In this study, we screened 23 new SNP–SNP loci and established a new detection method by combining a multiplex amplification refractory mutation system-based PCR (ARMS-PCR) and SNaPshot technology based on CE. First, we introduced an additional deliberate mismatch at the antepenultimate base from the 3′ end of primers when designing ARMS-PCR for SNP 1 (the first SNP of the SNP–SNP). Then, single base extension primers for SNaPshot assay were designed next to the position of SNP 2 (the second SNP). Finally, 15 loci were successfully built into four panels and these loci showed a relatively high level of polymorphism in the Southwest Chinese Han population. All the loci had an average probability of informative genotypes (I value) of 0.319 and a combined discrimination power of 0.999999999. Therefore, this new detection system will provide a valuable supplement to current methods.  相似文献   

4.
《Electrophoresis》2017,38(8):1154-1162
Nonbinary single‐nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent‐labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.  相似文献   

5.
Zha L  Yun L  Chen P  Luo H  Yan J  Hou Y 《Electrophoresis》2012,33(5):841-848
Tri-allelic single nucleotide polymorphisms (SNPs) are potential forensic markers for DNA analysis. Currently, only a limited number of tri-allelic SNP loci have been proved to be fit for forensic application. In this study, we aimed to develop an effective method to select and genotype tri-allelic SNPs based on both Pyrosequencing (PSQ) and the SNaPshot methods. 50 candidate SNPs were chosen from NCBI's dbSNP database and were analyzed by PSQ. The results revealed that 20 SNPs were tri-allelic and were located on 16 autosomal chromosomes. Then 20 SNP loci were combined in one multiplex polymerase chain reaction to develop a single base extension (SBE)-based SNP-typing assay. A total of 100 unrelated Chinese individuals were genotyped by this assay and allele frequencies were estimated. The total discrimination power was 0.999999999975 and the cumulative probability of exclusion was 0.9937. These data demonstrated that the strategy is a rapid and effective method for seeking and typing tri-allelic SNPs. In addition, the 20 tri-allelic SNP multiplex typing assay may be used to supplement paternity testing and human identification.  相似文献   

6.
《Electrophoresis》2017,38(3-4):513-520
For the development of clinically useful genotyping methods for SNPs, accuracy, simplicity, sensitivity, and cost‐effectiveness are the most important criteria. Among the methods currently being developed for SNP genotyping technology, the ligation‐dependent method is considered the simplest for clinical diagnosis. However, sensitivity is not guaranteed by the ligation reaction alone, and analysis of multiple targets is limited by the detection method. Although CE is an attractive alternative to error‐prone hybridization‐based detection, the multiplex assay process is complicated because of the size‐based DNA separation principle. In this study, we employed the ligase detection reaction coupled with high‐resolution CE‐SSCP to develop an accurate, sensitive, and simple multiplex genotyping method. Ligase detection reaction could amplify ligated products through recurrence of denaturation and ligation reaction, and SSCP could separate these products according to each different structure conformation without size variation. Thus, simple and sensitive SNP analysis can be performed using this method involving the use of similar‐sized probes, without complex probe design steps. We found that this method could not only accurately discriminate base mismatches but also quantitatively detect 37 SNPs of the tp53 gene, which are used as targets in multiplex analysis, using three‐color fluorescence‐labeled probes.  相似文献   

7.
任苹  刘京  蔺日胜  刘杨  黄美莎  胡胜  徐友春  李彩霞 《色谱》2018,36(7):599-607
建立了常染色体单核苷酸多态性(SNPs)复合检测芯片体系,用于未知个体的族群来源推断。基于前期筛选的74-SNPs组合,采用竞争性等位基因特异性聚合酶链式反应(PCR)的原理构建SNPs的扩增体系,在微流控芯片的每个反应孔内完成一个SNP的检测,通过高通量PCR微流控芯片实现了其中72个SNPs的同步检测。芯片的扩增由平板PCR仪完成,反应孔的荧光信号通过激光共聚焦扫描仪检测,最终通过提取的荧光值进行结果分析。使用该芯片检测获得52份样本的SNPs分型,分型结果的准确率为100%。以57个人群的3628个样本为参考人群数据库,进行20份样本的族群来源推断,推断结果与样本的实际来源一致。本研究建立的常染色体72个SNPs微流控芯片体系可以有效地进行SNP多态性分析检测,基于参考数据库,20份检测样本族群推断的准确性为100%。  相似文献   

8.
The SNP haplogroups of the Y‐chromosome are nonrandomly distributed among human populations. They are used for tracing the phylogeographical history of paternal lineages of male individuals and can be a useful tool for approaching the patrilineal bio‐geographic ancestry of unknown forensic evidences. With the aim of facilitating the inference of the principal informative worldwide Y‐SNP haplogroups, we have selected the minimum possible number of key Y‐SNPs to be amplified in a sensitive single multiplex PCR and detected by minisequencing. This assay, that includes 16 Y‐SNPs, was tested for male human specificity, sensitivity, and reproducibility. Its effectiveness was assessed in a set of degraded DNA samples and in a panel of male individuals from different worldwide populations. All these tests demonstrated the convenience of this assay for assigning the major Y haplogroups to forensic evidences by one single PCR‐minisequencing reaction.  相似文献   

9.
Accuracy, simplicity, and cost‐effectiveness are the most important criteria for a genotyping method for SNPs compatible with clinical use. One method developed for SNP genotyping, ligase‐based discrimination, is considered the simplest for clinical diagnosis. However, multiplex assays using this method are limited by the detection method. Although CE has been introduced as an alternative to error prone microarray‐based detection, the design process and multiplex assay procedure are complicated because of the DNA size‐dependent separation principle. In this study, we developed a simple and accurate multiplex genotyping method using reaction condition‐optimized ligation and high‐resolution CE‐based SSCP. With this high‐resolution CE‐SSCP system, we are able to use similar‐sized probes, thereby eliminating the complex probe design step and simplifying the optimization process. We found that this method could accurately discriminate single‐base mismatches in SNPs of the tp53 gene, used as targets for multiplex detection.  相似文献   

10.
The genetic variability has obtained more and more attention in the process of diagnosis and treatment of tumors.Herein,we have described a multiple genotyping method based on magnetic enrichmentmultiplex PCR (MEM-PCR) and microarray technology.Monodisperse magnetic beads were fabricated and modified with streptavidin.Four loci on two genes (M235T and A-6G loci on AGT gene,A1298C and C677T loci on MTHFR gene) were selected to study single nucleotide polymorphisms (SNP).Target sequences of these SNP loci were amplified using Cy3-labeled primers through multiplex PCR in one tube after the templates were enriched and purified by functional magnetic beads (MB).Four pairs of NH2-labeled probes,corresponding to each locus,were fixed on CHO-modified glass slide by covalent binding.Hybridization between target sequences and probes was performed under suitable conditions.The spotting locations on microarray and the ratio of fluorescence intensity,produced by different loci,were used to distinguish the SNP genotypes.Finally,three of gastric cancer samples were collected and genotyping analysis for these four SNP loci was carried out successfully simultaneously by this method.  相似文献   

11.
Unbalanced and degraded mixtures (UDM) are frequently encountered during forensic DNA analysis. For example, forensic DNA units regularly encounter DNA mixture signal where the DNA signal from the alleged offender is masked or swamped by high quantities of DNA from the victim. Our previous data presented a new kind of DNA markers that composed of a deletion/insertion polymorphism (DIP) and a SNP and we termed this new kind of microhaplotypes DIP‐SNP (combination of DIP and SNP). Since such markers could be designed short enough for degraded DNA amplification, we hypothesized that DIP‐SNP markers are applicable for typing of UDM. In this study, we developed a new set of DIP‐SNPs with short amplicons which were complement to our prior developed system. The multiplex PCR and SNaPshot assay were established for 20 DIP‐SNPs in a Chinese Han population. The DIP‐SNPs were capable of detecting the minor contributor's allele in home‐made DNA mixture with sensitivities from 1:100 to 1:1000 with a total of 1 –10 ng input DNA. Moreover, this system successfully typed the degraded DNA whether it came from the single source or mixture samples. In Chinese population, the system showed an average informative value of 0.293 and combined informative value of 0.998363862. Our results demonstrated that DIP‐SNPs may serve as a valuable tool in detection of UDM in forensic medicine.  相似文献   

12.
A single multiplex PCR assay capable of simultaneously amplifying nine canine‐specific autosomal STR markers (FH3210, FH3241, FH2004, FH2658, FH4012, REN214L11, FH2010, FH2361 and the newly described C38) was developed for individual identification and parentage testing in domestic dogs. In order to increase genotyping efficiency, amplicon sizes were optimized for a 90–350 bp range, with fluorescently labelled primers for use in Applied Biosystems, Inc., platforms. The performance of this new multiplex system was tested in 113 individuals from a case‐study population and 12 random dogs from mixed‐breed origin. Co‐dominant inheritance of STR alleles was investigated in 101 father, mother and son trios. Expected heterozygosity values vary between 0.5648 for REN214L11 and 0.9050 for C38. The high level of genetic diversity observed for most markers provides this multiplex with a very high discriminating power (matching probability=1.63/1010 and matching probability among siblings=4.9/103). Allele sequences and a proposal for standardized nomenclature are also herein presented, aiming at implementing the use of this system in forensic DNA typing and population genetic studies. This approach resulted in an optimized and well‐characterized canine DNA genotyping system that is highly performing and straightforward to integrate and employ routinely. Although this STR multiplex was developed for use and tested in a case‐study population, the Portuguese breed Cão de Gado Transmontano, it proved to be useful for general identification purposes or parentage testing.  相似文献   

13.
Insertion/deletion polymorphisms (Indels) have been considered as potential markers for forensic DNA analysis. However, the discrimination power of Indels is relatively lower due to the poor polymorphisms of diallelic markers. Here, two to three Indel loci that were very tightly linked in physical position were combined into a specific multi‐Indel marker to improve the discrimination, as well as a multiplex that consisted of a set of multi‐Indel markers was developed for forensic purpose. Finally, a multiplex system with 20 multi‐Indel markers including 43 Indel loci from dbSNP database was constructed and DNA sample can be analyzed by this multiplex in one PCR reaction and one CE run. A total of 150 unrelated individuals from Hunan province in South‐central China were genotyped by the multiplex system. The result showed that a total of 63 specific amplicons were detected, three alleles were observed in multi‐Indel markers including two Indel loci and four alleles were observed in the markers including three Indel loci. The cumulative probability of exclusion and the accumulated discrimination power were 0.9989 and 0.9999999999994, respectively. Our result demonstrated that the strategy could be efficient to develop higher polymorphic multi‐Indel markers, and the new multiplex could provide Supporting Information for forensic application.  相似文献   

14.
Semi‐nested PCR with allele‐specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP‐STR markers were available to identify the minor DNA component using AS‐PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP‐STR markers. Five pairs of allele‐specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS‐PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (~30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS‐PCR combined with semi‐nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.  相似文献   

15.
汪维鹏  倪坤仪  周国华 《分析化学》2006,34(10):1389-1394
以微流控芯片电泳为检测平台,建立了多重PCR扩增法同时测定多个单碱基多态性(SNP)位点的方法。先通过PCR扩增得一段含所有待测SNP位点的长片段;用限制性内切酶消化成短片段,再将酶切反应产物与脱氧核糖核酸适配器(DNAadapter)相连;以连接产物为模板,分成两管,分别用n条等位基因特异性引物和一条通用引物进行n重PCR扩增;最后用微流控芯片电泳法分离PCR扩增产物,根据两管扩增产物的芯片电泳图谱中扩增片段的大小判断SNP的类型。以细胞色素P4502D6(CYP2D6)基因中的5个SNP位点(100C>T、1661G>C、1758G>T、2470T>C和2850C>T)为检测对象,考察了各等位基因特异性引物之间的相互影响和扩增反应的特异性,采用微流控芯片电泳法成功测定了20名健康中国人的CYP2D6基因中5个SNP位点的基因多态性,与聚合酶链反应-限制性片段长度多态性法(PCR-RFLP)测定结果完全一致。  相似文献   

16.
Human identification is usually based on the study of STRs or SNPs depending on the particular characteristics of the investigation. However, other types of genetic variation such as insertion/deletion polymorphisms (indels) have considerable potential in the field of identification, since they can combine the desirable characteristics of both STRs and SNPs. In this study, a set of 38 non‐coding bi‐allelic autosomal indels reported to be polymorphic in African, European, and Asian populations were selected. We developed a sensitive genotyping assay, which is able to characterize all 38 bi‐allelic markers using a single multiplex PCR and detected with standard CE analyzers. Amplicon length was designed to be shorter than 160 bp. Complete profiles were obtained using 0.3 ng of DNA, and full genotyping of degraded samples was possible in cases where standard STR typing had partially failed. A total of 306 individuals from Angola, Mozambique, Portugal, Macau, and Taiwan were studied and population data are presented. All indels were polymorphic in the three population groups studied and the random match probabilities of the set ranged in orders of magnitude from 10?14 to 10?15. Therefore, the indel‐plex represents a valuable approach in human identification studies, especially in challenging DNA cases, as a more straightforward and efficient alternative to SNP typing.  相似文献   

17.
《Electrophoresis》2017,38(7):1007-1015
The SNPfor ID consortium identified a panel of 52 SNPs for forensic analysis that has been used by several laboratories worldwide. The original analysis of the 52 SNPs was based on a single multiplex reaction followed by two single‐base‐extension (SBE) reactions each of which was analyzed using capillary electrophoresis. The SBE assays were designed for high throughput genetic analyzers and were difficult to use on the single capillary ABI PRISM 310 Genetic Analyzer and the latest generation 3500 Genetic Analyzer, as sensitivity on the 310 was low and separation of products on the 3500 with POP‐7™ was poor. We have modified the original assay and split it into four multiplex reactions, each followed by an SBE assay. These multiplex assays were analyzed using polymer POP‐4™ on ABI 310 PRISM® and polymers POP‐4™, POP‐6™ and POP‐7™ on the 3500 Genetic Analyzer. The assays were sensitive and reproducible with input DNA as low as 60 pg using both the ABI 310 and 3500. In addition, we found that POP‐6™ was most effective with the 3500, based on the parameters that we assessed, achieving better separation of the small SBE products; this conflicted with the recommended use of POP‐7™ by the instrument manufacturer. To support the use of the SNP panel in casework in Malaysia we have created an allele frequency database from 325 individuals, representing the major population groups within Malaysia. Population and forensic parameters were estimated for all populations and its efficacy evaluated using 51 forensic samples from challenging casework.  相似文献   

18.
EvaGreen multiplex real-time polymerase chain reaction (EMRT-PCR) was designed for an assay that can join the advantages of multiplex PCR and real-time PCR to recognize animal genes more quickly in pet foods. EMRT-PCR based on melting temperatures discrimination by using EvaGreen fluorescence dye was developed for the analysis of pork and poultry in pet food. The method combines the use of poultry- and pork-specific primers that amplify small fragments of 12S rRNA and mitochondrial DNA genes. Appropriate mixtures of poultry and pork meat in reference samples were used to develop the assay. Gene yields of poultry and pork were represented in two melting peaks generated simultaneously at temperatures of 80.5 and 87.2 °C, respectively. Based upon the assay results, it has been concluded that EMRT-PCR assay might be an efficient tool for the verification of species origin in pet foods.  相似文献   

19.
Wang W  Sun W  Wu W  Zhou G 《Electrophoresis》2008,29(7):1490-1501
Adapter-ligation-mediated allele-specific amplification (ALM-ASA) is a potential method for multiplex SNPs typing at an ultra low cost. Here, we describe a kind of software, which designs allele-specific primers for ALM-ASA assay on multiplex SNPs. DNA sequences containing SNPs of interest are submitted into the software which contains various endonucleases for options. Based on the SNP sequence information and the selected endonucleases, the software is capable of automatically generating sets of information needed to perform genotyping experiments. Each set contains a suitable endonuclease, qualified allele-specific primers with orientations and melting temperatures, sizes of allele-specific amplicons, and gel electropherograms simulated according to the sizes of the allele-specific amplicons and the mobility of DNA fragments in 2% agarose gel. Seven SNPs in the arylamines N-acetyltransferase 2 (NAT2) gene, five SNPs in the BRCA1 gene, five SNPs in the COMT gene, six SNPs in the CYP2E1 gene, five SNPs in the MPO gene, and six SNPs in the NRG1 gene were selected for evaluating the software. Without extra optimization, seven SNPs in the NAT2 gene were successfully genotyped for genomic DNA samples from 127 individuals by using the first set of allele-specific primers yielded by the software. Although several steps are used in the ALM-ASA assay, the whole genotyping process can be completed within 3 h by optimizing each step. Profiting from the software, the ALM-ASA assay is easy-to-perform, labor-saving, and accurate.  相似文献   

20.
以CYP2D6基因中的6个SNP位点为测定对象, 开展多个SNP位点同时测定的方法学研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号