首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Field amplified sample stacking (FASS) uses differential electrophoretic velocity of analyte ions in the high‐conductivity background electrolyte zone and low conductivity sample zone for increasing the analyte concentration. The stacking rate of analyte ions in FASS is limited by molecular diffusion and convective dispersion due to nonuniform electroosmotic flow (EOF). We present a theoretical scaling analysis of stacking dynamics in FASS and its validation with a large set of on‐chip sample stacking experiments and numerical simulations. Through scaling analysis, we have identified two stacking regimes that are relevant for on‐chip FASS, depending upon whether the broadening of the stacked peak is dominated by axial diffusion or convective dispersion. We show that these two regimes are characterized by distinct length and time scales, based on which we obtain simplified nondimensional relations for the temporal growth of peak concentration and width in FASS. We first verify the theoretical scaling behavior in diffusion‐ and convection‐dominated regimes using numerical simulations. Thereafter, we show that the experimental data of temporal growth of peak concentration and width at varying electric fields, conductivity gradients, and EOF exhibit the theoretically predicted scaling behavior. The scaling behavior described in this work provides insights into the effect of varying experimental parameters, such as electric field, conductivity gradient, electroosmotic mobility, and electrophoretic mobility of the analyte on the dynamics of on‐chip FASS.  相似文献   

2.
A sample pretreatment microfluidic chip was described based on the principle of solid phase extraction and micro electro mechanical system technology. Oxidized porous silicon with the large surface area as the solid phase matrix for absorption of DNA from a biological sample can greatly improve the DNA yield. The factors that could affect the DNA yield were analyzed and the preparation technology and the experiment procedure were improved. The DNA purification process from the rat peripheral blood can be achieved and the DNA yield is 24 ng/(μL whole blood), which can reach the level of the commercial DNA purification kits. Furthermore, the DNA extracted from the whole blood can be amplified by polymerase chain reaction, which can achieve a high efficiency of the amplification. Translated from Chemical Journal of Chinese Universities, 2006, 27(4) (in Chinese)  相似文献   

3.
《Electrophoresis》2018,39(11):1329-1338
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro‐osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non‐Newtonian blood flow using ACET forces is investigated in detail by modeling its multi‐physics process with hybrid boundary element method (BEM) and immersed boundary‐lattice Boltzmann method (IB‐LBM). The Carreau–Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency‐dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable.  相似文献   

4.
A novel microfluidic method of continually detecting and counting beads‐labeled cells from a cell mixture without fluorescence labeling was presented in this paper. The detection system is composed of a microfluidic chip (with a permanent magnet inserted along the channel), a signal amplification circuit, and a LabView® based data acquisition device. The microfluidic chip can be functionally divided into separation zone and detection zone. By flowing the pre‐labeled sample solution, the target cells will be sequentially separated at the separation zone by the permanent magnet and detected and counted at the detection zone by a microfluidic resistive pulse sensor. Experiments of positive separation and detection of T‐lymphocytes and negative separation and detection of cancer cells from the whole blood samples were carried out to demonstrate the effectiveness of this method. The methodology of utilizing size difference between magnetic beads and cell‐magnetic beads complex for beads‐labeled cell detection is simple, automatic, and particularly suitable for beads‐based immunoassay without using fluorescence labeling.  相似文献   

5.
This paper reports the development of a disposable, integrated biochip for DNA sample preparation and PCR. The hybrid biochip (25 × 45 mm) is composed of a disposable PDMS layer with a microchannel chamber and reusable glass substrate integrated with a microheater and thermal microsensor. Lysis, purification, and PCR can be performed sequentially on this microfluidic device. Cell lysis is achieved by heat and purification is performed by mechanical filtration. Passive check valves are integrated to enable sample preparation and PCR in a fixed sequence. Reactor temperature is needed to lysis and PCR reaction is controlled within ±1°C by PID controller of LabVIEW software. Buccal epithelial cell lysis, DNA purification, and SY158 gene PCR amplification were successfully performed on this novel chip. Our experiments confirm that the entire process, except the off‐chip gel electrophoresis, requires only approximately 1 h for completion. This disposable microfluidic chip for sample preparation and PCR can be easily united with other technologies to realize a fully integrated DNA chip.  相似文献   

6.
A new design for a compact portable lab‐on‐a‐chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC4D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm3 (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high‐voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug‐and‐play cartridge format. The design of the dC4D cell has been optimized for maximum performance. The cartridge includes the top–bottom excitation and pick up electrodes incorporated into the cell and connected to push‐pull self‐latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high‐voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4+, K+, Ca2+, Na+, Mg2+, Li+) with a detection limit of approximately 5 μM and the analysis of the anions (Br?, Cl?, NO2?, NO3?, SO42?, F?) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated.  相似文献   

7.
8.
In this work, we report on the development of a lab‐on‐a‐chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor exhibits a linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations in the 1–30 μM range and a calculated detection limit of 60 nM. The sensor successfully detected zinc in a bovine serum extract and the results were corfirmed by independent AAS measurements. Our results demonstrate the advantageous qualities of this lab‐on‐a‐chip electrochemical sensor for clinical applications, which include small sample volume (µL scale), reduced cost, short response time and high accuracy at low concentrations of analyte.  相似文献   

9.
Highly stable and highly soluble push–pull heptamethine hemicyanines based on the tricyanofuran electron‐accepting group can be prepared on a 15 g scale. The compounds display giant second‐order nonlinear figure of merit, μβ of up to 31 000×10?48 esu, and lead to a poled material with a second‐order nonlinear response, r33 of 90 pm V?1 at 1.06 μm  相似文献   

10.
This paper reports the optimization of the on‐line coupling of 2,2′‐azinobis(3‐ethylbenzothiazoline)‐6‐sulfonic acid based radical scavenging assays with reversed‐phase high‐performance liquid chromatography. The residence time in the reactor was reduced to 6.4 s to ensure minimal peak broadening and loss of separation. Peak capacity losses between compound detection and measurement of the radical scavenging potential were reduced to 10% and lower on coupled column systems. The methodology was successfully applied for the detection of the scavenging activity of molecules encompassing a broad hydrophobicity range. The method shows promise for the assessment of low‐molecular‐weight polyphenols in red wine by coupled‐column high‐resolution high‐performance liquid chromatography with mass spectrometry analysis.  相似文献   

11.
《中国化学》2017,35(8):1299-1304
A novel lath‐shaped CuO microassemble consisting of well‐crystalized ultrafine nanocrystals was prepared by an ionothermal method with the assistance of ionic liquids (ILs , 1‐butyl‐3‐methylimidazolium tetrafluoroborate). As anode material of lithium ion batteries, the ILs‐CuO exhibits high specific capacity, durability and good rate performance, superior to bare CuO . At a high current density of 1000 mA •g−1, after 100 cycles, ILs‐CuO still retains a discharge capacity of 483.2 mAh •g−1. The improved electrochemical performances could be ascribed to the unique microscale lath‐shape CuO assembles composed of ultrafine nanostructure.  相似文献   

12.
An all‐PDMS on‐line microdialysis‐microchip electrophoresis with on‐chip derivatization and electrophoretic separation for near real‐time monitoring of primary amine‐containing analytes is described. Each part of the chip was optimized separately, and the effect of each of the components on temporal resolution, lag time, and separation efficiency of the device was determined. Aspartate and glutamate were employed as test analytes. Derivatization was accomplished with naphthalene‐2,3,‐dicarboxyaldehyde/cyanide (NDA/CN?), and the separation was performed using a 15‐cm serpentine channel. The analytes were detected using LIF detection.  相似文献   

13.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A quantitative sample introduction method based upon inkjet injection was applied to capillary electrophoresis coupled with stacking and sweeping on‐line concentration techniques. Methylxanthines were used as model compounds for the proof‐of‐concept of the method. The volume of injected sample could be easily manipulated by controlling the number of ejected droplets in the injection procedure. Under optimized conditions, a linear relationship between the ejected droplet number and peak area was obtained when the droplet number introduced into the capillary was less than 100. Under optimized quantitative on‐line concentration conditions, the limits of detection for theobromine, caffeine, and theophylline were 1.0, 2.0, and 1.0 μM, respectively. The inkjet injection system was evaluated by comparing it with conventional injection methods. The electropherogram of the inkjet injection mode was the same as that for hydrodynamic injection mode, and no sample discrimination was observed compared with the electrokinetic injection mode. The established method was applied to the determination of methylxanthines in bottled green tea. The recoveries of theobromine, caffeine, and theophylline were 94.1, 110.6, and 86.8%, respectively. We conclude that proposed method can be used for quantitative concentration for capillary electrophoresis, thus resulting in an improved accuracy.  相似文献   

15.
A three‐phase solvent system was efficiently applied for high‐speed counter‐current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three‐phase solvent system of n‐hexane/methyl tert‐butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high‐speed counter‐current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one‐step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of β‐sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively.  相似文献   

16.
Cost efficient and facile synthesis of functional materials that enable low voltage operations is highly demanded for the future growth of plastic electronic sector. In this article we report a fast, solvent‐free and roll‐to‐roll compatible method of fabricating novel solid ion‐gel membranes from 1‐ethyl‐3‐methylimidazolium bis(trifluoromethyl‐sulfonyl)imide ([EMIM][TFSI]) and acrylate monomer blends of trimethylolpropane triacrylate (TMPTA) and tetra(ethylene glycol)diacrylate (TEDGA) via electron beam curing. The manufactured free standing and solid ion‐gel membranes were successfully utilized in various electronic devices such as ion‐modulated organic thin film transistors (IMTs), supercapacitors (SC) and electrochromic (EC) displays. The tailor‐made ion‐gel membrane, with an optimized composition, exhibited high specific capacitance and good mechanical properties. The prepared IMTs operated at remarkable low voltages of less than 1.5 V with on‐currents on the order of milliamps and ON/OFF ratios greater than ~104. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2352–2360  相似文献   

17.
Fabrication of capillaries with tapered tips is an important technique that is required in many analytical chemistry areas, such as ESI‐MS, CE, electrochemical analysis, and microinjection. This paper describes a simple and effective grinding‐based fabrication method for capillaries with tapered tips. A novel grinding mode utilizing the combination of rotation and precession of an elastic capillary was developed, which significantly improved the controllability to the grinding process as well as the capillary tip shape. The capillary was fabricated by fixing it in an electric drill installed perpendicularly, and grind the capillary tip rotated around its own axis as well as the drill axis on sandpapers. Compared with conventional fabrication techniques for capillary tips, the present method is easy to control the capillary tip shape in routine laboratories without the requirement of expensive equipments or poisonous reagent (e.g. hydrofluoric acid (HF) solution). Various capillaries with different tip diameters and tip taper angles could be fabricated using the present method with good controllability and reproducibility. These capillaries were applied in high‐speed CE and ESI‐MS analysis to demonstrate the feasibility and potential of this fabrication method.  相似文献   

18.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

19.
A vortex‐assisted liquid–liquid micro‐extraction coupled with high‐performance liquid chromatography, with UV–vis, is proposed to pre‐concentrate methyl methacrylate and to improve separation in biological matrices. The use of 1‐octanol as extracting phase, its volume, the need for a dispersant agent, the agitation conditions and the cooling time before phase separation were evaluated. In optimum conditions, enrichment factors of 20 (±0.5) and enrichment recovery of 99% were obtained. The straightforward association of this extraction process with the HPLC method, previously regulated by the International Organization for Standardization, afforded a detection limit of 122 ng/mL and a quantification limit of 370 ng/mL. The within‐batch precision, relative standard deviation, was 3% for a sample with 1.49 µg/mL and 4% for a sample with 13.4 µg/mL. The results showed a between batch‐precision of 21% for experiments performed on five different days, for a sample with a concentration of 1.10 µg/mL in methyl methacrylate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Induced‐charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO‐based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi‐phase ICEO (BICEO) actuated in a four‐terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field‐effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC‐biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye–Huckel limit, with the simulation results in qualitative agreement with in‐lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field‐deployable platform for real‐time nanoparticle trapping in the context of dilute electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号