首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This work presents a simple, fast and low‐cost method for the simultaneous determination of three drugs by flow‐injection analysis with multiple‐pulse amperometric (MPA) detection using a wall‐jet flow cell with a boron‐doped diamond electrode. The amperometric determination of caffeine (CF), ibuprofen (IB) and paracetamol (PC) was performed by the application of a four‐potential waveform using the MPA technique. PC is oxidized at E1 (1.20 V/70 ms) and thus selectively detected; PC and CF are oxidized at E2 (1.49 V/40 ms); PC, CF and IB are oxidized at E3 (1.70 V/70 ms); and E4 (1.80 V/100 ms) is applied for electrode cleaning. The subtraction of currents obtained at the different potentials did not provide accurate determinations of CF and IB, thus it was required to investigate correction factors to determine CF and IB without the interference from PC and CF using the respective amperometric signals obtained at E2 and E3. The proposed method was successfully applied for the determination of three drugs in pharmaceutical samples with low generation of residues and a high analytical frequency (150 h?1) in comparison with HPLC‐DAD method.  相似文献   

2.
This work presents the electrochemical oxidation of the antioxidant astaxanthin on a glassy‐carbon electrode (GCE) and its amperometric determination in salmon samples using a batch‐injection analysis (BIA) system. The proposed BIA method consisted of 80‐µL a fast microliter injection of sample at 193 µL s?1 on the GCE immersed in the electrolyte, a mixture of acetone, dichloromethane, and water (80 : 10 : 10 v/v), containing 0.1 mol L?1 HClO4. Advantages include high precision (RSD of 2.4 %), sample throughput of 240 h?1, and low detection limit (0.3 µmol L?1 that corresponds to 0.1 µg g?1) for the analysis of acetone extracts of salmon samples. Recovery values between 83 and 97 % attested the accuracy of the method.  相似文献   

3.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

4.
《Electroanalysis》2017,29(9):2147-2154
Isatin is an endogenous indole compound in humans and rodents that has a wide range of biological activity. In rat models, isatin concentrations have been shown to increase in the heart, brain, blood plasma, and urine with stress. Studies on patients suffering from Parkinson's disease have indicated a correlation between progress of the disease and urinary output of the molecule. Isatin is electrochemically active and can therefore be detected with electrochemical techniques. In this work, we compared the performance of a nitrogen‐incorporated tetrahedral amorphous carbon (ta‐C:N) and a boron‐doped nanocrystalline diamond thin‐film electrode for the oxidative detection of this biomolecule using flow injection analysis with amperometric detection. The measurements were performed in 0.1 phosphate buffer pH 7.2. The ta‐C:N electrode, like boron‐doped nanocrystalline diamond, exhibits some excellent properties for electroanalytical measurements including (i) low background current and noise, (ii) microstructural stability at positive detection potentials, and (iii) good activity for a wide range of bioanalytes without conventional surface pretreatment. The results reveal that both electrodes exhibit a linear dynamic range from 100 to 0.1 μmol L−1, a short‐term response variability 3–4 % RSD (30 injections), a sensitivity of 18 mA M‐1, and a limit of detection (S/N=3) of 1.0×10−7 mol L−1 (14 ng mL−1 or 2.5 fmol).  相似文献   

5.
《Electroanalysis》2005,17(13):1160-1170
Analysis of aqueous solutions containing chlorinated phenol pollutants was accomplished by capillary electrophoresis with direct and indirect amperometric detection using a boron‐doped diamond microelectrode. The microelectrode was prepared by (i) coating a thin film of boron‐doped polycrystalline diamond on a sharpened platinum wire (76‐μm diameter) and (ii) sealing the coated wire in a polypropylene pipet tip. The diamond microelectrode, used in end‐column detection, exhibited a low and stable background current with low peak‐to‐peak noise and good electrochemical activity for the pollutants without any conventional pretreatment. The electrode performance was evaluated in terms of the linear dynamic range, sensitivity, limit of quantitation, and response precision for the detection of several priority pollutants (2‐chlorophenol, 3‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and pentachlorophenol). The diamond microelectrode gave good detection figures of merit for these contaminants in the direct amperometric mode with no evidence of any electrode fouling. As an example, the concentration limit of quantitation for 2‐chlorophenol was 100 nM or 13 ppb (S/N=3) and the relative standard deviation of the peak height for 9 injections was 4.7±0.5% (est. 1.1 nL inj.). The separation efficiency was greater than 100 000 plates/m for all seven solutes. The microelectrode was also employed for the indirect detection of the chlorinated phenols. In this approach, which is useful for detecting electroinactive solutes, ferrocene carboxylic acid was added to the run buffer as the electrophore. Good detection figures of merit were also achieved for the separation and detection of 2‐chlorophenol, 3‐chlorophenol, and 2,4‐dichlorophenol in this mode, although the linear dynamic range was not as wide and the limit of quantitation was not as low as in direct amperometry. For example, the concentration limit of quantitation for these pollutants was in the mid micromolar range (1–10 ppm) with excellent response reproducibility of 3.2±0.8%, or less.  相似文献   

6.
Improvement of pulse amperometric detection (PAD) method is demonstrated in determination of ethylenethiourea (imidazolidine‐2‐thione, ETU). The anodic detection of ETU will produce polymeric film on an electrode leading to an inactive electrode surface. Here, the PAD method was used to remove the polymeric film formed on the electrode surface between ETU detection. Further, the scheme was integrated with automated flow injection analysis (AFIA) for determining ETU. The operational parameters of PAD in the AFIA system were discussed thoroughly. The analytical characteristics of the system were evaluated at optimum conditions. The linear range of calibration plot was between 20 to 300 μM (the correlative coefficient, r = 0.999) and the detection limit was 0.9 μM (S/N = 3). The relative standard deviations of detection of 50 μM ETU were 0.82% with and 9.07% without PAD scheme. The results indicate the system is a very promising tool for ETU determination. Finally, the matrix effects of two water samples that were collected from a campus and a farm show good recoveries of 92% and 96%.  相似文献   

7.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

8.
习玲玲  朱岩 《分析化学》2008,36(5):678-682
建立了一种用阴离子交换色谱分离、以自制铜/金修饰电极为工作电极的直流安培电化学法(DC)直接检测硫酸阿米卡星注射液中主要组分及杂质含量的分析方法。考察了流动相浓度、测定电位等参数对色谱分离和测定的影响。在固定相为CarboPacPA10阴离子交换柱、流动相为26 mmol/L NaOH的色谱条件下,检测电位为0.64 V时,阿米卡星在0.0005~0.02 g/L(r=0.9989)和0.02~0.2 g/L(r=0.9991)两个浓度范围内呈线性。与裸Au电极在采用脉冲安培检测模式(PAD)时相比,电化学检测所需要的碱性强度低(pH<13),而且测定灵敏度高,线性范围宽。本方法不需要柱前和柱后衍生化,能同时测定硫酸阿米卡星注射液中的主要组分和杂质组分。修饰电极制作方法简单,催化稳定性好,可望被应用到流动注射、毛细管电泳等其它流动体系中,对硫酸阿米卡星原料药、注射液等实际样品中的各组分进行测定。  相似文献   

9.
N‐acetylcysteine (NAC) and gentamicin sulfate (GS) are biologically and pharmaceutically relevant thiol‐containing compounds. NAC is well known for its antioxidant properties, whereas GS is an aminoglycoside that is used as a broadband antibiotic. Both pharmaceuticals play a significant role in the treatment of bacterial infections by suppressing the formation of biofilms. According to the European Pharmacopeia protocol, GS is analyzed by high performance liquid chromatography (HPLC) using gold electrodes for electrochemical detection. Here, we report the electrochemical detection of these compounds at NH2‐terminated boron‐doped diamond electrodes, which show significantly reduced electrode passivation, an issue commonly known for gold electrodes. Cyclic voltammetry experiments performed for a period of 70 minutes showed that the peak current decreased only by 1.6 %/7.4 % for the two peak currents recorded for GS, and 6.6 % for the oxidation peak of NAC, whereas at gold electrodes a decrease in peak current of 14.2 % was observed for GS, and of 64 %/30 % for the two peak currents of NAC. For their quantitative determination, differential pulse voltammetry was performed in a concentration range of 2–49 µg/mL of NAC with a limit of detection (LOD) of 1.527 µg/mL, and a limit of quantification (LOQ) of 3.624 µg/mL, respectively. The quantification of GS in a concentration range of 0.2–50 µg/mL resulted in a LOD of 1.714 µg/mL, and a LOQ of 6.420 µg/mL, respectively.  相似文献   

10.
The present work reports a simple and quick strategy for simultaneous determination of paracetamol (PC) and ascorbic acid (AA) in pharmaceutical formulations using flow injection method with multiple pulse amperometric detection. The method allows the resolution of the mixture without chemical pretreatment of the sample or electrode modification or the use of chemometric techniques for data analysis. The compounds are detected by applying four sequential pulses (waveform) in function of time to a three‐electrode amperometric system that uses a wall‐jet cell with gold as working electrode. AA is direct detected at +0.40 V and PC is indirectly detected at 0.0 V by the reduction (desorption) of the oxidation product (N‐acetyl‐p‐benzoquinoneimine) electrochemically generated at +0.65 V. The fourth potential pulse (?0.05 V) is applied for the complete regeneration (cleaning) of the gold electrode surface. The linear response range was optimized between 5 and 24 mg L?1 for AA and 50 and 240 mg L?1 for PC. The difference between the two responses ranges (10‐fold) present correlation with the concentration of these compounds in two different pharmaceutical formulations available in the Brazilian market. The analytical frequency was calculated in 60 injections per hour. The use of the proposed methodology for PC quantification in the presence of higher AA concentrations was also carried out. Using the standard addition method, it was possible to detect PC in trace levels (LD=0.2 mg L?1) in the presence of 880‐fold more of AA (176 mg L?1).  相似文献   

11.
《Electroanalysis》2006,18(8):830-834
A facile method for the simultaneous measurement of tryptophan (Trp) and tyrosine (Tyr) was firstly exploited at unmodified boron‐doped diamond (BDD) electrode. The experimental results indicated that by using differential pulse voltammetry, the oxidative peaks of these two kinds of amino acids could be completely separated at BDD electrode. The peak separation of Trp and Tyr was developed to be 0.64 V when Na2PO4/NaOH buffer solution with the optimized pH 11.2 was employed. The detection limit of Trp was obtained to be 1×10?5 M, while that of Tyr was achieved to be 1×10?6 M. The present method was also evidenced to be available to the determination of real samples of amino acids.  相似文献   

12.
《Electroanalysis》2017,29(4):1180-1187
The voltammetric behavior of ramipril (RMP), an angiotensin‐converting enzyme inhibitor, was investigated for the first time in the literature on a boron‐doped diamond electrode (BDDE) using cyclic (CV) and square‐wave voltammetry (SWV). Its behavior was also considered in the presence of a thiazide diuretic, hydrochlorothiazide (HCTZ), for the simultaneous determination. The performance of BDDE and glassy carbon electrode (GCE) was compared, since RMP provides a high oxidation potential. It was observed that the anodic peak potentials for HCTZ and RMP at the BDDE were 1.23 and 1.67 V (vs . Ag/AgCl (3.0 mol L‐1 KCl)) by CV in BR buffer solution (pH 2.0), respectively. The influence of supporting electrolyte, pH and scan rate in the current response of these both drugs was examined to select optimum experimental conditions. By this way, the determination of RMP and its association with HCTZ using SWV and a BDDE was successfully applied in real samples (single and combined dosage forms), with results in close agreement at 95% confidence level with those obtained using high‐performance liquid chromatography.  相似文献   

13.
习玲玲  朱岩 《分析化学》2007,35(5):703-706
建立了一种用反相离子对液相色谱(LC)分离,以金电极为工作电极的脉冲安培电化学法(PAD)直接检测硫酸卡那霉素中主要组分及杂质含量的分析方法。流动相为0.033mol/L草酸、0.012mol/L七氟丁酸、105mL/L乙腈,用稀NaOH调节pH至3.4。考察了各色谱参数对分离测定的影响。实验证明,本方法不需要衍生化,可直接检测硫酸卡那霉素。与报道的其它方法相比,本方法不仅能使硫酸卡那霉素中的卡那霉素A、B得到了很好的分离,还分离出了其它一些未能确证的组分。如用质谱法等对未知组分进行确证后,对硫酸卡那霉素原料药、注射液、滴眼液及兽药等实际样品中的卡那霉素各组分进行测定。可望成为一种标准分析方法。  相似文献   

14.
Electrochemical oxidation of azoxystrobin, a systemic fungicide commonly used in agriculture to protect a wide variety of crops, was investigated using cyclic voltammetry with a boron‐doped diamond electrode (BDDE) in aqueous buffer solutions. Two pH independent irreversible anodic current peaks controlled mostly by diffusion were observed in wide pH range (2 to 12) at potentials +1600 mV and +2150 mV vs. saturated silver‐silver chloride electrode. Mechanism of the electrochemical oxidation was proposed and supported with high performance liquid chromatography/mass spectrometry analysis of azoxystrobin solutions electrolyzed on carbon fiber brush electrode. The main product of the first two‐electron oxidation step was identified as methyl 2‐(2‐{[6‐(2‐cyanophenoxy)pyrimidin‐4‐yl]oxy}phenyl)‐2‐hydroxy‐3‐oxopropanoate. An analytical method for the determination of azoxystrobin in water samples and pesticide preparation by differential pulse voltammetry with BDDE was developed. The method provides a wide linear dynamic range (3.0×10?7 to 2.0×10?4 mol L?1) with limit of detection 8×10?8 mol L?1. Accuracy of the method was evaluated by the addition and recovery method with recoveries ranging from 96.0 to 105.8 %. Interference study proved sufficient selectivity of the developed voltammetric method for the azoxystrobin determination in presence of azole fungicides as well as pesticides used to prevent the same crops.  相似文献   

15.
A flow injection analysis with integrated amperometric alcohol dehydrogenase biosensor and a handheld Mira‐DS Raman spectrometer have been compared for the determination of ethanol in different samples of alcoholic drinks. The biosensor was constructed from the commercial screen‐printed carbon electrode as amperometric transducer and covered by a thin layer comprising alcohol dehydrogenase, reduced single‐layer graphene oxide, rhodium(IV) dioxide, and glutaraldehyde. Both assemblies were tested on analysis of plum brandy, white rum, vodka, white and red wines, strong dark beer, and non‐alcoholic beer. The two principally different analytical methods were critically compared and some limitations found, especially in case of analysis of red wine and beers. Finally, some future improvements of both analytical tools under test outlined.  相似文献   

16.
毛细管电泳法;安痛定注射液;安替比林;氨基比林;安培检测  相似文献   

17.
烟草中糖类物质的高效毛细管电泳-安培检测研究   总被引:15,自引:2,他引:13  
刘少民  宋立楠  张太森  方禹之 《分析化学》2000,28(10):1233-1236
将高效毛细管电泳-安培检测技术(HPCE-AD)用于不同烟草样品中糖类物质的测定。在 1×10-6mol/L~1×10-3 mol/L范围内,存在良好的线性关系,葡萄糖、果糖、蔗糖和麦牙糖的检测限均小于 5.0 ×10-7mol/L,结果令人满意。  相似文献   

18.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

19.
习玲玲  朱岩 《分析化学》2006,34(12):1763-1766
建立了一种新的用反相离子对液相色谱(LC)分离,以金电极为工作电极的脉冲安培电化学法(PAD)直接检测硫酸庆大霉素中各组分含量的分析方法。流动相为0.033 mol/L草酸、0.012 mol/L七氟丁酸、210 mL/L乙睛,用稀NaOH调节pH至3.4。与报道的其它方法相比,该方法能使庆大霉素各有效组分C1、C1 a、C2、C2 a很好分离,整个分析过程<30 m in。考察了各色谱参数对分离测定的影响。实验证明,本方法不需要衍生化,可直接检测硫酸庆大霉素。  相似文献   

20.
High-performance liquid chromatography (HPLC) coupled with the reverse-pulse amperometric (RPA) detection method has been developed for the analysis of triorganotin compounds in aqueous solutions. The major advantage of RPA vs. conventional amperometric detection is its ‘in situ’ elimination of interference from dissolved oxygen in the chromatographic eluent; therefore, no extra chemicals or apparatus are required for oxygen removal. With a Partisil-10 SCX column and an eluent of methanol/0.01 M sodium acetate buffer (70:30, pH 5.5), the four triorganotins, viz., trimethyl-, triethyl-, tripropyl-, and tributyltin, can be totally separated. Detection by RPA was performed with a static dropping mercury electrode with an initial potential of ?1.15 V and a final potential of +0.15 V. The absolute detection limit (S/N = 3) ranged from 12 ng of tributyltin (as tin) to 0.3 μg of trimethyltin (as tin). Applications of the method to the analysis of trace tributyltin in marine antifoulant leachate and sea water are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号