首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A simple, cheap, sensitive and selective probe for determination of DNPH in wastewater using thioglycolic acid (TGA)‐coated CdTe QDs (TGA‐QDs) as fluorescence probe has been established, and the properties of CdTe QDs were characterized by TEM, FT‐IR, DLS, XRD and zeta potentials. CdTe QDs fluorescence is highly efficiently quenched after adding DNPH on account of electron transfer effect, and the fluorescence quenching behavior of CdTe QDs interaction with DNPH is static quenching process. A good linear relationship is observed between the relative fluorescence intensity (F0/F) and 0.06–10 ng mL?1 of DNPH. As compared with some of reported methods, LOD of this method for analysis of DNPH (0.23 ng mL?1) is the lowest. Masking agents of DDTC and NH4OH can eliminate the interference of Cu2+, Ag+ and Hg2+. Hence, DNPH can be selectively and accurately detected and the established method was successfully used for detecting DNPH in wastewater with acceptable recovery of 90.6–102%.  相似文献   

2.
In present work a simple methodology for electroanalytical sensing of diethylstilbestrol (DES) using graphene quantum dots (GQD) surface modified screen‐printed electrodes (SPE) is reported. GQD was synthesized by simple bottom‐up method based on citric acid pyrolysis at 200 °C and electrodeposited directly at electrode surface under cyclic voltammetric conditions. The obtained GQD presented an average diameter of 7 nm and was characterized by techniques such as transmission and scanning electron microscopy, and electrochemical impedance spectroscopy. The proposed sensor exhibits a linear response from 0.05 to 7.5 μmol L?1, with limit of detection and quantification of 8.8 nmol L?1 and 29.0 nmol L?1, respectively. The repeatability study presented RSD=3.6 % for 6 consecutive measurements using the same electrode surface and the reproducibility study showed RSD=6.6 % for measurements with 6 different electrode surfaces. The proposed sensor was successfully applied for DES determination in synthetic urine and tap water spiked samples and good recoveries were obtained without any sample pre‐treatment, showing its promising analytical performance.  相似文献   

3.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

4.
A methodology for free contact microchannel impedance measurements through a dielectric microchip was developed for monitoring the kinetics of enzymatic reactions. For that purpose, we propose a procedure which consists of subtracting the impedance contribution of the dielectric polymer layer, which separates the two parallel microband electrodes embedded in it, from the global microchip impedance. This operation allows microchannel impedance enhancement for real time monitoring of impedance modulus changes without direct electrical contact. Application for determination of kinetic parameters of enzyme‐substrate reaction independently of optical or electrochemical properties of the substrates is demonstrated. Hydrolysis 4‐nitrophenylphosphate (pNPP) and 4‐aminophenylphosphate (pAPP), which are two substrates for Alkaline Phosphatase (ALP), are taken as examples. Moreover, signal amplification response of the impedance modulus is achieved by the use of superparamagnetic microbeads as enzyme supports. Plotting the maximum rate against the ALP concentration gives rise to straight lines with a slope that is the hydrolysis catalytic pseudo first‐order rate constant, kcat. Sensitivity, selectivity and reproducibility of these measurements have been demonstrated comparatively with both substrates. kcat values were 103 s?1 and 52 s?1 with pAPP and pNPP, respectively.  相似文献   

5.
This article the first reports on a fabrication and application of an electrochemical three electrode micro‐set containing: in situ plated lead film on carbon fiber working microelectrode, Ag/AgCl reference electrode and a platinum wire counter electrode placed in one casing for simultaneous Ni(II) and Co(II) traces determination by square wave adsorptive stripping voltammetry (SW AdSV). Ni(II) and Co(II) in forms of their complexes with nioxime were accumulated on the lead film plated on a carbon fibers microelectrode during standard procedure of measurement. Thanks to the fact that measurements were performed in micro‐vessel of a volume of 200 μl small amounts of reagents were used to prepare samples for measurements. In addition, because of the use of microelectrode, sample solutions were not mixed during accumulation step of measurements. This fact creates the possibility of conducting fields analysis. The experimental parameters (composition of the supporting electrolyte, potential and time of accumulation) and possible interference effects were investigated. The linear calibration graphs for Ni(II) and Co(II) were in the range from 2×10?9 to 1×10?7 mol L?1 and from 2×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The correctness of the proposed method was checked by determining Ni(II) and Co(II) in the certified reference material (SPS‐SW1) with satisfactory results.  相似文献   

6.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

7.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

8.
New nickel‐containing ionic liquids were synthesized, characterized and their electrochemistry was investigated. In addition, a mechanism for the electrochemical synthesis of nanoparticles from these compounds is proposed. In these so‐called liquid metal salts, the nickel(II) cation is octahedrally coordinated by six N‐alkylimidazole ligands. The different counter anions that were used are bis(trifluoromethanesulfonyl)imide (Tf2N?), trifluoromethanesulfonate (OTf?) and methanesulfonate (OMs?). Several different N‐alkylimidazoles were considered, with the alkyl sidechain ranging in length from methyl to dodecyl. The newly synthesized liquid metal salts were characterized by CHN analysis, FTIR, DSC, TGA and viscosity measurements. An odd‐even effect was observed for the melting temperatures and viscosities of the ionic liquids, with the complexes with an even number of carbon atoms in the alkyl chain of the imidazole having a higher melting temperature and a lower viscosity than the complexes with an odd number of carbons. The crystal structures of several of the nickel(II) complexes that are not liquid at room temperature were determined. The electrochemistry of the compounds with the lowest viscosities was investigated. The nickel(II) cation could be reduced but surprisingly no nickel deposits were obtained on the electrode. Instead, nickel nanoparticles were formed at 100 % selectivity, as confirmed by TEM. The magnetic properties of these nanoparticles were investigated by SQUID measurements.  相似文献   

9.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

10.
《Electroanalysis》2017,29(7):1700-1711
A selective method based on derivatization with 2,4‐dinitrophenylhydrazine (DNPH) is described for the determination of several carbonyl compounds. The factors affecting the derivatization reaction of aldehyde and DNPH were investigated. The product of the derivatization reaction has been characterized by UV/Vis spectrophotometry, NMR, infrared spectroscopy and cyclic voltammetry. Then, an electrochemical study for the determination of aldehyde‐2.4‐dinitrophenylhydrazone was performed at glassy carbon electrode (GCE) using square wave voltammetry (SWV). After the optimization of experimental parameters, the limits of detection (at 3σ ) obtained for all aldehyde‐2,4‐DNPH were varied from 15.82 to 78.39 μmol L−1 and relative standard deviations were between 1.8 and 4.5%. Finally, the proposed method was applied to determine the aldehydes concentration in drinking water and orange juice samples with satisfactory results.  相似文献   

11.
A fluorescent aminoacid was designed for selective and sensitive detection of Cu(II) in aqueous solution. The designing of this Cu(II) fluorescent chemosensing molecule, N ± (1‐naphthyl). aminoacetic acid (NAA), was based on the binding of Cu(II) to aminoacetic acid and the novel charge transfer photophysics of 1‐aminonaphthalenes. The fluorescence of NAA was found quenched by Cu (II) and several other metal ions of similar electronic structure such as Co(II), Ni(II) and Zn(II). The quenching was shown to occur via electron transfer within the metal‐NAA complex, which required an optimal combination of high binding affinity and favorable redox properties of the components in the metal‐NAA complex and hence afforded selective fluorometric detection of Cu(II). The calibration graph obeyed Stern‐Volmer theory and was shown for Cu(II) over the range of 0–2.75 ± 10–4 mol/L. The quenching constant of Cu(II) was measured as 8.0 ± 103 mol/L that was two orders of magnitude higher than those of Co(II), Ni(II) and Zn(II). The 3SD limit of detection for Cu(II) was 8.00 ± 10?6 mol/L with a coefficient of variation of 1.65%. Linear range for quantitative detection of Cu(II) was 2.67 ± 10?5‐2.75 ± 10?4 mol/L. The method was applied to synthetic sample measurements which gave recoveries of 105%‐112%.  相似文献   

12.
Multi‐wall carbon nanotubes (MWCNTs) and Nafion composite film (MWCNTs/Nafion) were used for fabricating electrochemical sensors for the voltammetric detection of trace lead(II) and cadmium(II) in several water samples. The morphology and structure of MWCNTs/Nafion film were characterized by scanning electron microscopy (SEM) and infrared spectrum (IR). The electron transfer of MWCNTs/Nafion composite film was examined by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). Various experimental parameters, which influenced the response of MWCNTs/Nafion/GC to target metals, were optimized. The results showed that the synergistic effect was obtained on the MWCNTs/Nafion/GC whose sensitivity and stability were better than those of Nafion‐coated electrode (Nafion/GC) or CNTs/GC. Stability of the Pb(II) and Cd(II) stripping signals was excellent with relative standard deviations (RSD) within 5% (n=10) from one electrode preparation to another, and RSD of 30 µg·L?1 Pb(II) and Cd(II) were 2.8% and 3.2% for 20 repeated analysis on one single CNTs/Nafion/GC. Over 50 runs, the stability of Pb and Cd detection at the MWCNTs/Nafion conposites electrode was still satisfactory with RSD lower than 6.0%. The determination limits (S/N=3) of the proposed method were determined to be 100 ng·L?1 for Pb and 150 ng·L?1 for Cd. Finally, the MWCNTs/Nafion/GC was successfully applied to determine Pb(II) and Cd(II) in different water samples with recoveries of 97%–103% for Pb and 96%–104% for Cd.  相似文献   

13.
Anion transfer processes at a liquid|liquid interface were studied with an interdigitated gold band array electrode. The organic phase, 4‐(3‐phenylpropyl)‐pyridine containing Co(II)phthalocyanine, was immobilised as random droplets at the electrode surface and then immersed into aqueous electrolyte. Oxidation of Co(II)phthalocyanine at the generator electrode was shown to be associated with anion transfer from the aqueous into the organic phase. The corresponding back reduction at the collector electrode with anion expulsion was delayed by the anion/cation diffusion time across the interelectrode gap. A working curve based on a finite difference numerical simulation model was employed to estimate the apparent diffusion coefficients for anions in the organic phase (PF6?4?3?). Potential applications in ion analysis are discussed.  相似文献   

14.
《Analytical letters》2012,45(4):697-707
Abstract

The preparation of a gold electrode modified by aminylferrocene (FcAI) covalently bound to L‐cysteine self‐assembled monolayer (L‐Cys/Au SAM) was described, and characterized by cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). In pH 7.4 buffers, FcAI incorporated in L‐Cys/Au SAM gave a pair of well‐defined and quasi‐reversible cyclic voltammetric peaks at 0.109 vs. saturated calomel eletrode (SCE), characteristic of Fe(II)/Fe(III) redox couples of the Fc. The apparent surface electron transfer rate constant is 6.86 s?1 at the modified electrode. The immobilized Fc gave an excellent electrocatalytic activity for the oxidation of epinephrine (EP). The catalytic current of EP vs. its concentration has a good linear relation in the range of 1.7×10?7–1.0×10?4 mol/L, with the correlation coefficient of 0.9975 and detection limit of 1.8×10?8 mol/L. The modified electrode can be used for the determination of EP in practical injection. The method is simple, quick, sensitive, and accurate.  相似文献   

15.
《Analytical letters》2012,45(2):369-386
Abstract

Three kinds of transition metal chelates of unsymmetrical tetradentate Schiff base, o‐hydroxybenzophenone‐1,2‐diaminobenzene‐pyrrole‐2‐carbaldehyde(H2L), were synthesized to prepare anion‐selective electrodes and their anion response characteristics were investigated. The results show that the performances of the electrodes are considerably influenced by the nature of the central metals. The proposed electrode with the Cu(II)‐chelate and cationic additive demonstrated an anti‐Hofmeister selectivity sequence with a good selectivity towards thiocyanate in the following order: Thiocyanate>iodide>salicylate>perchlorate>bromide>nitrite>chloride>acetate>fluoride>nitrate>sulfite>sulfate. The electrode had an excellent linear response to thiocyanate from 3.4×10?7 to 1.0×10?1 M in phosphate buffer solution at pH 5.0 with a slope of ?58.7 mV per decade, a detection limit of 1.6×10?7 M, and a fast response time within 5 s over the entire concentration series. Spectroscopic techniques and AC impedance were used to investigate the response mechanism to thiocyanate of the membrane doped with Cu(II)‐chelate. The preliminary application of the electrode for determination of thiocyanate in wastewater and urine samples is reported.  相似文献   

16.
《Analytical letters》2012,45(6):1085-1097
Abstract

A methodology for the determination of the pesticide chlorfenvinphos by microwave‐assisted solvent extraction and square‐wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane‐acetone (1∶1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of?0.60 V (vs. Ag/AgCl) in the presence of Britton‐Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0×10?8 mol l?1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g?1 level. The average recoveries and standard deviations for the global procedure reached by MASE‐square‐wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.  相似文献   

17.
Enzyme based electrochemical detection method developed for chemical toxicant ethanolamine (EA). Monoamine oxidase A (MAO‐A) enzyme was used for the oxidation of EA. A direct electron transfer from the electrode to EA without any mediator with the help of MAO‐A enzyme was attained and this confirms the application of this methodology for the development of third generation biosensor for EA sensing well below the IDLH (30 ppm) value of EA. Moreover, heterogeneous rate constant (0.021s?1) and the number of electron involved (5.2) were deduced for EA in PBS buffer. The calibration plot showed linearity 2.02×10?4 M to 10.10×10?4 M of EA in PBS buffer with detection limit 4.1 ppm. The modified electrodes are characterized by Raman and Electrochemical impedance spectroscopy (EIS) techniques. The outcome of this work indicates about the utility of this methodology for the sensing of EA in the environment if it is present as well as to degrade EA into other compounds without using any indicator or mediator.  相似文献   

18.
《Analytical letters》2012,45(14):2365-2375
Abstract

A sensitive and selective spectrophotometric method is proposed for the rapid determination of cadmium(II) using, p,p′‐dinitro‐sym‐diphenylcarbazid, directly in aqueous solution. The reaction between cadmium(II) and p,p′‐dinitro‐sym‐diphenylcarbazid occurs immediately in strong basic media (0.02 N sodium hydroxide solution). The complex shows a maximum of absorption at 630–640 nm, and the absorbance remains stable for at least 24 h. The method allows the cadmium determination over the range 0.5–6.0 µg mL?1, with a molar absortivity of 2.05×104 L mol?1 cm?1 and features a detection limit of 0.13 ppm. The interferences caused by several ions [Ca(II), K(I), Ba(II), Al(III), Pb(II), Zn(II), Cl?1, NO3 ?, SO4 2?], which are present in most of environmental samples, were determined. The validation of the spectrophotometric method was done by recovery test of cadmium(II) in tap water and sea water. The results show that the proposed method has been successfully applied to the determination of cadmium(II) in water samples.  相似文献   

19.
The triple phase boundary transfer of anions from the aqueous into an organic phase can be driven electrochemically here with the tetraphenylporphyrinato‐Mn(III/II) (or TPPMn) redox system in 4‐(3‐phenylpropyl)‐pyridine) (or PPP). Anions investigated are perchlorate, chloride, fluoride, and bicarbonate. The bicarbonate and fluoride transfer processes are shown to be chemically more complex compared to the perchlorate and chloride cases with UV‐vis‐spectroelectrochemical measurements indicating a combination of HCO3?/CO32? transfer processes and association of fluoride with TPPMn(III)+, respectively. In situ spectroelectrochemistry is developed for ion‐transfer voltammetry into sub‐microliter organic phase regions on mesoporous ITO conducting film electrodes.  相似文献   

20.
《Chemphyschem》2004,5(1):57-67
Excitation‐energy transport (EET) phenomena in mesomeso directly linked Zn(II )porphyrin arrays in the singlet and triplet excited states were investigated with a view to electronic coupling strength and coherence length by steady‐state and time‐resolved spectroscopic measurements. To investigate energy transfer in the triplet states, we modified the Zn(II )porphyrin arrays with bromo substituents at both ends. The coupling strength of the Soret bands of the arrays was estimated to be about 2200 cm?1, and that of the Q bands is about 570 cm?1. The coherence length in the S1 state of the Zn(II )porphyrin arrays was determined to be 4–5 porphyrin units, which is comparable to that of the well‐ordered two‐dimensional circular structure B850 in the peripheral light‐harvesting antenna (LH2) in photosynthetic purple bacteria. This indicates that the Zn(II )porphyrin arrays are well suited for mimicking natural light‐harvesting antenna complexes. On the other hand, the rate of energy transfer in the triplet state is estimated to be on the order of 100 μs?1, and the very weak coupling between the triplet states (ca. 0.003 cm?1), indicates that the triplet excitation energy is essentially localized on a single porphyrin moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号