首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mo-Se thin films have been electrodeposited on conducting tin oxide (SnO2) coated glass substrates from a sulfamatic solution containing Na2MoO4 and H2SeO3 under potentiostatic conditions. The deposition potential varied from –0.6 V to –0.9 V, at a deposition temperature of 20–40 °C and pH 6.5. X-ray diffraction analysis revealed that the overall composition of the films deposited is consistent with the formation of MoO2 and MoSe2. The lattice parameters of the as-deposited MoSe2 are a=b=3.2340 Å and c=13.2859 Å, which fits a hexagonal structure.  相似文献   

3.
Below a critical thickness, of about 60 nm, the glass transition temperature of polystyrene (PS) films decreases with film thickness, as demonstrated using free‐standing films. A geometrical model is developed here describing this phenomenon in the case of ideal (Gaussian) chains. This model, which can be considered as an application of the free volume model, assumes that the decrease of the glass transition temperature from thick to ultrathin films is due to the modification of the interpenetration between neighboring chains. The theoretical curve deduced from the model is in excellent agreement with the PS experimental results, without using any adjustable parameters. From these results, it can be concluded that new chain motions, usually buried in bulk samples, are expressed by the presence of the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 10–17, 2007  相似文献   

4.
The influence of various potential windows on the synthesis of α-PbO and the uniformity of its formation over the entire surface of the lead electrode has been studied by scanning a laser beam over the entire surface and measuring the corresponding photocurrent using the photoelectrochemical laser imaging technique. This technique revealed that a very uniformly distributed highly (110) plane oriented thin film of α-PbO is obtained by potentiodynamic anodization of the lead electrode in an alkaline medium at 80 °C in the potential range of ?0.32 to +0.08 V vs SCE, giving the highest (73%) quantum yield at 480 nm, an open-circuit photopotential of 800 mV and a short-circuit photocurrent of 5.5 mA cm?2. Gärtner analysis suggests that the highest photoactivity achieved with this material is due to the formation of a large space charge width (0.63 m) and diffusion length (0.36 m) of the minority carriers and absorption of almost 100% of the light (480 nm) within the space charge and diffusion regions.  相似文献   

5.
We have used silicon micromachining techniques to fabricate devices for measuring specific heat or other calorimetric signals from microgram-quantity samples over a temperature range from 1.7 to at least 525 K in magnetic fields to date up to 8 T. The devices are based on a robust silicon-nitride membrane with thin film heaters and thermometers. Different types of thermometers are used for different purposes and in different temperature ranges. These devices are particularly useful for thin film samples (typically 100-400 nm thick at present) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small bulk samples attached by conducting grease, Ga or In, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high field measurements because the thermal conductance can be measured once in zero field and is field independent, while the time constant of the relaxation does not depend on thermometer calibration.  相似文献   

6.
Vanadium oxide thin films were prepared by spray pyrolysis using solutions of vanadium chloride (VCl3) with different concentrations on glass substrates heated at 200 and 250 °C. The influence of substrate temperature (Ts) and solution concentration (molarity) on structural and vibrational properties is discussed by using X-ray diffraction and Raman spectroscopy. The results revealed that at 0.05 M and Ts = 200 °C, V4O9 thin films are obtained. At 250 °C, V2O5 phases with preferential orientation are observed and the films become polycrystalline when the molarity increases.  相似文献   

7.
The temperature diffusivity β and heat conductivity κ of thin polymer films were measured at room temperature. Temperature waves were excited at one side of the film and detected at the other side with a pyroelectric foil (PVDF). The dependence of β and κ on chemical and structural parameters have been studied. For the first time, Langmuir–Blodgett–Kuhn multilayer assemblies prepared from “hairy rod” polymers were characterized: μm thin films of stiff polyamides prepared by spincoating exhibit heat conductivities an order of magnitude larger than “classical” polymers.  相似文献   

8.
The optical gas recognition capabilities of thin film layer of 4-[bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-amino]phenol deposed on quartz substrates were studied. The dynamic gas responses to the following analytes have been investigated as air pollutants (SO2, NO2, CO, CH4 and NH3). The spin-coated bispyrazole layer appears to have reversible response towards SO2 and a very low and irreversible response to NO2. The selectivity of the thin film based on bispyrazole layer with respect to other analytes was also examined and the present data show that the thin sensing layer in the presence of CO, CH4 and NH3 in low concentration does not influence its optical properties.  相似文献   

9.
A novel microbubble inflation method has been used to determine the creep compliance of poly(vinyl acetate) and polystyrene ultra‐thin films (13–300 nm thick) at temperatures from below to above the glass temperature. We present results that suggest that time‐temperature and time‐thickness superposition hold in the glassy relaxation regime. Although time‐temperature superposition is found for the entire response curve for each thickness, we also find that time‐thickness superposition fails as the long‐time compliance is approached. This effect occurs because of a strong stiffening as the film thickness decreases. We also show first evidence of stiffening in the glassy regime of free standing films of polystyrene. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1952–1965, 2008  相似文献   

10.
Abstract

This study reviews ZnO, NiO, and ZnO/NiO nanocomposites thin films deposition using the Spray Pyrolysis Technique (S.P.T). The thin films were deposited onto ordinary glass substrates heated at 500?°C from aqueous solutions of zinc chloride and nickel chloride precursors dissolved in distilled water. The structural, morphological, and optical properties of the ZnO, NiO, and ZnO/NiO thin films have been studied by X-ray diffraction, scanning electron microscopy, Raman spectroscopies, and so on. The optical band gaps are 3.3 and 3.5?eV for ZnO and NiO thin films, respectively obtained by UV–Vis spectroscopy. However, the optical band gaps of ZnO/NiO nanocomposites thin films, are noticeable out of the range (3.4–3.64?eV).  相似文献   

11.
The simultaneous electrodeposition of the system Cu–In–Se was investigated. The study was carried out at pH 8.5 using diethylentriamine as complexing agent for the Cu+2 ion. The synthesis of CuInSe2 semiconductor thin films was carried out by electrodeposition on different substrates [indium–tin oxide (ITO) on glass, aluminum and type 304 steel]. The simultaneous codeposition of the Cu, In, and Se was achieved by constant potential electrolysis technique in aqueous solutions containing the elements that conform this material. The deposits of CuInSe2 were about 4 μm thick, which is thick enough for the photovoltaic effect to take place. The as-deposited films were characterized by atomic emission spectroscopy with inductive coupling plasm (AES-ICP) and scanning electronic microscopy (SEM). Annealed films were characterized X-ray diffraction, optical NIR spectroscopy, and photoelectrochemical studies The films were obtained with a well-defined composition, very close to the expected one. Homogeneous deposit with chalcopyrite structure was produced. A In2O3 phase was also observed. Annealing of the film improved the crystallinity of the films. Good photo response, an appropriate absorption coefficient, and a band gap of 1.09 eV were obtained.  相似文献   

12.
The technique for ITO (Tin‐doped indium oxide) thin films by sol‐gel process is presented in this paper. After annealing at 500° for 15 min, ITO gel films get transformed into nanocrystallined indium tin oxide films. We studied the microstructure of ITO thin film which is closely related to optical and electrical properties. The microstructure of ITO thin film can be observed through high‐resolution transmission electronic spectroscopy (HRTEM) and the Fast Fourier Transform (FFT) technique. The film is nanocrystallite with grain sizes about 20 nm. Also, the surface chemical components were studied by XPS spectra. The transmission and the resistivity of ITO films is 97.0% and 3.5 × 10?3 Ω?cm, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the optical and dielectrical properties of a novel series of quinoline azodyes (5-(4′-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQL1–AQL5) were investigated and the obtained results were analyzed. The X-ray diffraction (XRD) patterns of AQLn show that the materials in the powder form are a mixture of amorphous and crystalline structure, while the thermally deposited thin films are completely amorphous. The optical constants such as the refractive index, n, the absorption index, k and the absorption coefficient, α, were determined using spectrophotometric measurements of transmittance (T) and reflectance (R) in the wavelength range 200–2500 nm. According to the single oscillator model (SOM), some related parameters such as oscillation energy (Eo), the dispersion energy (Ed), the optical dielectric constant (ε), the lattice dielectric constant (εL) and the ratio of free carrier concentration to its effective mass (N/m*) are estimated. The emission spectra of azo quinoline ligands (AQLn) exhibit dual fluorescence peaks in the region 512–580 nm. This finding reveals the formation of two stoichiometric hydrogen-bonding in the ground and excited state. The dielectrical properties and alternating current conductivity (σAC) are investigated in temperature range 298–483 K and frequency range 0.1–100 KHz.  相似文献   

14.
We discuss instabilities exhibited by free surface nematic liquid crystal (NLC) films of nanoscale thickness deposited on solid substrates, with a focus on surface instabilities that lead to dewetting. Such instabilities have been discussed extensively; however, there is still no consensus regarding the interpretation of experimental results, appropriate modeling approaches, or instability mechanisms. Instabilities of thin NLC free surface films are related to a wider class of problems involving dewetting of non-Newtonian fluids. For nanoscale films, the substrate–film interaction, often modeled by a suitable disjoining pressure, becomes relevant. For NLCs, one can extend the formulation to include the elastic energy of the NLC film, leading to an ‘effective’ disjoining pressure, playing an important role in instability development. Focusing on thin film modeling within the framework of the long-wave asymptotic model, we discuss various instability mechanisms and outline problems where new research is needed.  相似文献   

15.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

16.
Results of permittivity measurements, electromagnetic interference shielding effectiveness, and heat generation due to microwave absorption in conducting polymer coated textiles are reported and discussed. The intrinsically conducting polymer, polypyrrole, doped with anthraquinone-2-sulfonic acid (AQSA) or para-toluene-2-sulfonic acid (pTSA) was applied on textile substrates and the resulting materials were investigated in the frequency range 1-18 GHz. The 0.54 mm thick conducting textile/polypyrrole composites absorbed up to 49.5% of the incident 30-35 W microwave radiation. A thermography station was used to monitor the temperature of these composites during the irradiation process, where absorption was confirmed via visible heat losses. Samples with lower conductivity showed larger temperature increases caused by microwave absorption compared to samples with higher conductivity. A sample with an average sheet resistivity of 150 Ω/sq. showed a maximum temperature increase of 5.27 °C, whilst a sample with a lower resistivity (105 Ω/sq.) rose by 3.85 °C.  相似文献   

17.
《Electrophoresis》2018,39(14):1777-1785
The stability of the electroosmotic flow of the two‐phase system electrolyte‐dielectric with a free interface in the microchannel under an external electric field is examined theoretically. The mathematical model includes the Nernst–Plank equations for the ion concentrations. The linear stability of the 1D nonstationary solution with respect to the small, periodic perturbations along the channel, is studied. Two types of instability have been highlighted. The first is known as the long‐wave instability and is connected with the distortion of the free charge on the interface. In the long‐wave area, the results are in good agreement with the ones obtained theoretically and experimentally in the literature. The second type of instability is a short‐wave and mostly connected with the disturbance of the electrolyte conductivity. The short‐wave type of instability has not been found previously in the literature and constitutes the basis and the strength of the present work. It is revealed that with the increase of the external electric field frequency, the 1D flow is stabilized. The dependence of the flow on the other parameters of the system is qualitatively the same as for the constant electric field.  相似文献   

18.
In this article, we investigate the glass transition in polystyrene melts and free‐standing ultra‐thin films by means of large‐scale computer simulations. The transition temperatures are obtained from static (density) and dynamic (diffusion and orientational relaxation) measurements. As it turns out, the glass transition temperature of a 3 nm thin film is ~60 °K lower than that of the bulk. Local orientational mobility of the phenyl bonds is studied with the help of Legendre polynomials of the second‐order P2(t). The α and β relaxation times are obtained from the spectral density of P2(t). Our simulations reveal that interfaces affect α and β‐relaxation processes differently. The β relaxation rate is faster in the center of the film than near a free surface; for the α relaxation rate, an opposite trend is observed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1160–1167, 2010  相似文献   

19.
Melanin is an important class of biological pigments because of its distinct chemical and physical properties. The electrochemical deposition of natural melanin thin films was studied using two different techniques; constant potential and cyclic voltammetry along with a deposition time of five hours. The thin films deposited electrochemically on a fluorine-doped tin oxide conductive glass substrate using the constant potential method, exhibited faster growth rate and better adhesion to the fluorine-doped tin oxide working electrodes than those deposited using the cyclic voltammetry method. The thin films deposited on the fluorine-doped tin oxide conductor glass using the constant potential method were also more homogeneous than those deposited via the cyclic voltammetry technique. The increase of film thickness is related to the increase of electrochemical deposition time. Interestingly, the electrochemical deposition using the constant potential method had the advantage of consuming less electric charge. The physical and chemical structures of the melanin thin films were characterized using ultraviolet–visible absorption spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analysis. The ultraviolet–visible absorption spectra showed the correlation between the variation of deposition rates of melanin and the type of electrochemical technique employed as well as the thickness of the film. The average thickness of the film is 500 nm which absorb 40% of light in both type of films. The atomic force microscopy images illustrated the homogeneous deposition of the melanin molecules on the fluorine-doped tin oxide conductive glass substrate, indicating that the thickness of the thin films can be controlled. We estimated an average grain size of 14.093 Å. The ease of preparing such thin films of organic materials can open new avenues towards the use of soft conductors, in contrast to the complex preparation of industrial semiconductors.  相似文献   

20.
Induced‐charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO‐based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi‐phase ICEO (BICEO) actuated in a four‐terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field‐effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC‐biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye–Huckel limit, with the simulation results in qualitative agreement with in‐lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field‐deployable platform for real‐time nanoparticle trapping in the context of dilute electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号