首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both screen‐printed electrodes modified with a dispersion of carbon black (CB) and solid paste electrodes prepared using a nanostructured CB were developed and characterized. Indeed, increasing the peak currents and/or their shifting to negative potentials were observed, exhibiting efficient electrocatalytic activity towards nitrite oxidation with high sensitivity and low detection limit. Solid carbon paste electrodes (SCPEs) and solid carbon black paste electrodes (SCBPEs) were challenged in amperometric mode with nitrite since detection limit reached is 65 and 5 nM respectively. Nitrate was first reduced to nitrite in reductor column, then detected on SCBPEs. Nitrate and nitrite were determined in real samples.  相似文献   

2.
For the construction of the sensor, three different carbon black (CB) materials (VULCAN XC72R, BLACK PEARLS 4750 and CB N220) were explored as modifying nanomaterial. Firstly, the electrochemical activity of the each SPE modified was compared by cyclic voltammetry and electrochemical impedance spectroscopy technique, using [Fe(CN)6]3?/4? as redox couple. After demonstrating that electrodes modified with different types of CB were characterized by improved electrochemical performances when compared with bare electrodes, and among them, electrodes modified with CB BP4750 is characterised by slightly better electrochemical properties, this type of electrode was used for the development of the analytical method. By applying SWV technique in 0.2 mol L?1 phosphate buffer (pH 3.0), the obtained analytical curves for ACP and LVF were found linearly from 4.0 to 80.0 μmol L?1 and from 0.90 to 70.0 μmol L?1 with limit of detection of 2.6 μmol L?1 and 0.42 μmol L?1 for ACP and LVF, respectively. Finally, the quantification of these drugs in river water was evaluated using the new here‐proposed sensor by recovery method in spiked samples, obtaining satisfactory recovery values. The results achieved demonstrated that the developed analytical tool is of great analytical interest being easy to use, cost‐effective, miniaturized, and thus suitable for low cost on site analysis.  相似文献   

3.
李云龙  苏招红  陈超  孟越  谢青季 《应用化学》2011,28(9):1046-1051
基于多巴胺(DA)在多壁碳纳米管(MWCNTs)修饰玻璃碳(GC)电极上的电聚合,制得聚多巴胺(PDA)/MWCNTs/GC电极,并对该修饰电极进行了电化学阻抗谱 (EIS)和循环伏安法(CV)表征。 在该修饰电极上,DA呈现良好的电化学行为。在pH=7.4磷酸缓冲溶液中其氧化电流显著高于在裸电极上的响应,且能有效地抑制2.0 mmol/L抗坏血酸(AA)或K4Fe(CN)6的直接电化学响应,表明MWCNTs可增敏信号,且阳离子选择透过性PDA膜可抑制阴离子的电化学干扰。 采用CV实验检测DA,DA氧化的半微分伏安峰高(ipa-sd)与多巴胺浓度在0.08~1.76 μmol/L范围内呈线性关系,在无抗坏血酸和有0.5 mmol/L抗坏血酸共存时的线性回归方程分别为ipa-sd(μA/s1/2)=0.107+0.405c(μmol/L)(r2=0.986)和ipa-sd(μA/s1/2)=0.628+0.649c(μmol/L)(r2=0.992),检测限均为8.0×10-8 mol/L(S/N=3)。 该法用于盐酸多巴胺注射液中多巴胺的快速测定,结果满意。  相似文献   

4.
张波  刘佳  刘晓晨  李德军 《电化学》2019,25(6):749-756
为了探索碳载体材料结构对于硫的电化学性能的影响,本文通过高温固相法将升华硫与石墨烯、导电炭黑、多孔碳等三种不同结构的碳载体材料复合,制备得到硫含量相近的三种硫碳复合材料. 通过电镜扫描、低温氮吸附、X射线衍射等方法,对所制备的硫碳复合材料的结构和硫的分布状态进行了表征和分析. 并进一步对三种复合材料进行了电化学性能测试,结果表明,硫负载到多孔碳中的电化学性能最好,其初始放电比容量达到了1623.2 mA·h·g-1,循环100周之后,其放电比容量仍能保持在845 mA·h·g-1. 这主要因为相比于石墨烯的层状结构和导电炭黑的链状结构,多孔碳材料中含有大量的微孔和介孔,负载硫后,与硫分子的接触面积大,活性物质的利用率高,从而提高了硫的电化学性能.  相似文献   

5.
采用原位还原法制备金纳米粒子/聚多巴胺/碳纳米管(Au-PDA-MWNTs)复合材料,并将其用于建立高灵敏检测核黄素的电化学方法.采用紫外–可见光谱、扫描电镜、x-射线能谱对Au-PDA-MWNTs复合材料进行表征,采用循环伏安法和差示脉冲伏安法探讨核黄素(RF)在Au-PDA-MWNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定.该方法对核黄素的检测在5×10-9 mol·L-1~1×10-5 mol·L-1的范围内呈良好的线性关系(R=0.9906),检测限为1.7×10-9 mol·L-1.本方法操作简便、抗干扰能力强,方法可行,因此该方法成功实现了维生素药片中RF含量的测定.  相似文献   

6.
纳米碳管由于其独特的物理和化学性能及广阔的应用前景而备受关注,其相关研究涉及到众多领域[1 ̄3]。在电化学分析领域,与其它碳电极材料相比,纳米碳管电极具有较大的电极表面积和较高的电子传递速率,其使用能增大响应电流、降低检出限,是目前电化学分析电极中一个十分引人注目  相似文献   

7.
《Analytical letters》2012,45(5):817-853
Abstract

Carbon and its derivatives, as the high performance material, occupy a special place in electrochemistry due to its ‐in many ways‐ extreme properties. Recent trends and advances in the electrochemistry of carbon‐based electrodes are reviewed. The varieties of carbon‐based electrodes, their basic physicochemical properties and some characteristics are surveyed. Special attention is paid to the possibilities of carbon‐based electrodes in electroanalytical investigation in pharmaceutical dosage forms and biological samples using modern electrochemical techniques. This review includes a summary of the rules that must be considered for drug analysis from its dosage forms and biological samples using carbon‐based electrodes. The present review is the first comprehensive report on the heterogeneous and homogeneous carbon electrodes, and an addition to many excellent reviews on carbon electrodes in the literature. This review summarizes some of the recent developments and applications of carbon‐based electrodes for drug compounds in their dosage forms and in biological samples in the period from 1996 till 2006. Also some further selected designs (screen‐printed; carbon nanotubes, etc.) and applications have been discussed.  相似文献   

8.
《Electroanalysis》2018,30(8):1723-1733
Three different carbon materials, graphite, graphene and multiwalled carbon nanotubes (MWCNTs), were applied to fabricate carbon paste electrodes and used directly as working electrodes without any further modification in a simple electrochemical system for simultaneous detection of four DNA bases, guanine, adenine, thymine and cytosine. EIS and SEM were used to characterize the formed carbon paste electrodes made from different carbon nanomaterials and silicon oil, respectively. Conditions for bases detection were studied, such as ratio of carbon nanomaterials to silicon oil, types of buffer saline and pH. An unexpected result was discovered that compared with graphite and graphene, MWCNTs in carbon paste electrodes were not able to obtain admirable electrochemical behavior, the possible reason of which was preliminary discussed. Individual and simultaneous detection of four bases were successfully carried out, with acceptable linear ranges and low detection limits. Furthermore, this facile method had admirable reproducibility, stability and acceptable recovery in real urine sample (97.62 % ∼103.36 %), indicating certain practical potential.  相似文献   

9.
以高性能活性炭作为负极材料, 将颗粒平均粒径为40~60 nm的纳米钴氧化物干凝胶作为正极材料组成电化学电容器, 研究了电容器在7 mol/L的KOH水溶液中的电化学性能, 其充放电电压可以达到1.4~1.6 V, 以材料本身重量计算的比能量和比功率分别达到15.4 W·h/kg和23.5 kW/kg.  相似文献   

10.
The effect of surface modifications on the electrochemical behavior of the anticancer drug idarubicin was studied at multiwalled carbon nanotubes modified glassy carbon and edge plane pyrolytic graphite electrodes. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The modified electrodes were constructed for the determination of idarubicin using adsorptive stripping differential pulse voltammetry. The experimental parameters such as supporting electrolyte, pH, accumulation time and potential, amount of carbon nanotubes for the sensitive assay of idarubicin were studied as details. Under the optimized conditions, idarubicin gave a linear response in the range 9.36×10?8–1.87×10?6 M for modified glassy carbon and 9.36×10?8–9.36×10?7 M for modified edge plane pyrolytic graphite electrodes. The detection limits were found as 1.87×10?8 M and 3.75×10?8 M based on modified glassy carbon and edge plane pyrolytic graphite electrodes, respectively. Interfering species such as ascorbic acid, dopamine, and aspirin showed no interference with the selective determination of idarubicin. The analyzing method was fully validated and successfully applied for the determination of idarubicin in its pharmaceutical dosage form. The possible oxidation mechanism of idarubicin was also discussed. The results revealed that the modified electrodes showed an obvious electrocatalytic activity toward the oxidation of idarubicin by a remarkable enhancement in the current response compared with bare electrodes.  相似文献   

11.
《Electroanalysis》2017,29(2):548-558
In this work, graphene and multi‐walled carbon nanotubes were derivatised with anthraquinone (AQ) groups using spontaneous or electrochemical grafting of Fast Red AL salt. Glassy carbon (GC) electrodes were coated with AQ‐modified carbon nanomaterials to study the oxygen reduction reaction (ORR). These nanomaterials were characterised by X‐ray photoelectron spectroscopy and multilayer formation of AQ on the electrografted electrodes was observed. All the modified electrodes showed enhanced electrocatalytic activity towards the ORR in alkaline media. High AQ loading on the electrodes was found and the number of electrons transferred per O2 molecule was between 2 and 4. In addition, the stability testing of AQ‐derivatised carbon nanomaterial‐coated GC electrodes was performed.  相似文献   

12.
In this work, nickel oxide nanoparticles-modified multi-walled carbon nanotubes (CNTs) were prepared and used for H2O2 sensing application. Firstly, ex situ NiO nanoparticles (NPs) were prepared and further used to decorate polyethylenimine (PEI)-modified carboxylated CNTs. The obtained nanocomposite and its precursors were identified by using X-ray diffraction, thermal analysis, Raman spectroscopy and SEM and TEM images, N2 adsorption-desorption isotherms, and electrochemical techniques. The sensing properties of the NiO-modified nanocomposite toward H2O2 were studied by electrochemical techniques using glassy carbon electrodes (GCEs) as support material. After optimizing the sensor construction, the sensor sensitivity was about of 0.83±0.01 A M−1 cm−2 with a LOD of about 1.0 μM. In addition, it showed excellent anti-interference properties, reproducibility, and stability (over 4 months). Finally, such sensors were coupled to a flow injection device and the H2O2 concentration of some commercial antiseptic solutions were successfully obtained (with recovery ratios between 96.3–102.4 %).  相似文献   

13.
以石墨和液体石蜡油为主要原料,分别制备了掺杂不同量多壁碳纳米管(MWCNT)、石墨烯(GRA)、电容活性炭(YEC)和电池活性炭(YBC)的多种碳糊底电极Y-CPE(Y代表各种掺杂碳材料,CPE代表纯碳糊电极).采用恒电位法在-0.10 V(vs.Ag/Ag Cl)电位下将铂电沉积到这些电极上.结果表明,当电池碳的含量为14%时,Pt/YBC-CPE(14%)复合电极对甲醇具有最好的电催化氧化活性.采用恒电位方法在0.85 V(vs.Ag/Ag Cl)电位下将聚邻甲基苯胺(POT)电聚合沉积到纯碳糊电极CPE和含有电池碳的YBC-CPE(14%)电极上,得到复合电极POT/CPE和POT/YBC-CPE(14%),再通过恒电位方法将铂电沉积到这2个复合电极上.扫描电镜(SEM)观察结果表明,在Pt/CPE,Pt/YBC-CPE(14%),Pt/POT(6.5 mC)/CPE和Pt/POT(6.5 mC)/YBC-CPE(14%)4个复合电极中,在Pt/POT/YBC-CPE(14%)复合电极上的铂粒子的尺寸最小,并且Pt/POT(6.5 mC)/YBC-CPE(14%)复合电极电催化氧化甲醇活性最高.在POT(6.5 mC)/CPE和POT(6.5 mC)/YBC-CPE(14%)上Pt纳米颗粒的电沉积过程是一个近似的3D成核过程.研究还发现,复合电极Pt/POT/CPE和Pt/POT/YBC-CPE电催化氧化甲醇的活性随POT膜厚度的增加先增大后减少,存在一个最佳的膜厚度.  相似文献   

14.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

15.
The influence of mechanical activation parameters (acceleration of milling bodies and activation time) on the morphology, texture, and functional composition of the surface of P514 and N375 carbon black was studied. Mechanical activation of carbon black leads to a decrease in the carbon black aggregate size and in the dibutyl phthalate adsorption and to an increase in the ash residue. Rubber stocks were prepared from SKMS-30 ARK rubber and mechanically activated carbon black, and their physicomechanical properties after vulcanization were determined.  相似文献   

16.
Pt/C和Pt/CNTs电极的电化学稳定性研究   总被引:1,自引:0,他引:1  
邵玉艳  尹鸽平  高云智 《化学学报》2006,64(16):1752-1756
采用恒电位氧化法研究了Pt/C和Pt/CNTs电极的电化学稳定性. 相同条件下, Pt/C电极的氧化电流大约为Pt/CNTs电极的2倍; 120 h氧化后, Pt/C电极Pt的电化学表面积下降了21.3%, 而Pt/CNTs电极仅下降了7.6%, 表明Pt/CNTs电极性能衰减较慢. X射线光电子能谱(XPS)分析表明, Pt/C的载体碳黑表面氧增加量大于Pt/CNTs中碳纳米管(CNTs)表面氧的增加量, 说明碳黑的被氧化程度较高, 电化学稳定性差; Pt的表面化学状态没有发生变化; 碳纳米管本身的抗电化学氧化性也大于碳黑. 所以, 载体的被氧化程度不同是两种电极性能衰减不同的主要原因之一, 并且排除了Pt表面状态的影响.  相似文献   

17.
碳纳米管的功能化及其电化学性能   总被引:8,自引:0,他引:8  
超级电容器作为一种新型的储能元件,以其快速储存、释放能量等优点,近年来成为各国科研工作的研究重点和焦点[1 ̄3],并在数据记忆存储系统、便携式仪器设备、后备电源、通讯设备、计算机、燃料电池、电动车混合电源等许多领域都有广泛的应用前景[4]。目前,超级电容器用的电极材  相似文献   

18.
All-solid-state electronic tongue and its application for beverage analysis   总被引:1,自引:0,他引:1  
Disposable all-solid-state planar-type potentiometric electronic tongue has been developed with the carbon paste electrode array screen-printed on a polymeric substrate. Highly cross-sensitive solvent polymeric membranes based on different matrices [e.g. poly(vinyl chloride) (PVC), aromatic polyurethane, and polypyrrole (Ppy)] and doped with common electroactive components for potentiometric measurements (e.g. various plasticizers, and cation- and anion-selective ionophores) were deposited on the screen-printed carbon paste electrodes (SCPEs). It was observed that an incorporation of 10 wt.% of Prussian Blue (PB; Fe4(III)[Fe(II)(CN)6]3) into a commercially available carbon paste and electrochemical preanodization of SCPEs in KCl solution at 1.6 V provide the all-solid-state planar-type electrodes with significantly improved potentiometric stability. The proposed fabrication method gives possibility for simple and reproducible mass-production of low-cost disposable electronic tongue microsystems. The practical utility of all-solid-state disposable electronic tongue chips has been demonstrated with a flow injection cell for the analysis of potable waters, soft drinks, and beers. It is shown that the potentiometric measurements with the SCPE-based all-solid-state chips and the combined use of chemometric methods (e.g. principal components analysis, partial least regression (PLS), and principal component regression (PCR)) for the analysis of obtained data sets successfully discriminate various types of samples according to their tastes.  相似文献   

19.
High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO2). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO2 to HCOOH was investigated in a flow cell using boron‐doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m?2 s?1 at a current density of 15 mA cm?2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation.  相似文献   

20.
采用原位聚合法合成聚苯胺(PAIN)及聚苯胺/炭气凝胶(PAIN/CA)复合材料,经过高温裂解制备含氮碳(NC)及含氮碳/炭气凝胶复合材料(NC/CA),再以KOH为活化剂对其进行活化,制备活化含氮碳(ANC)及活化含氮碳/炭气凝胶复合材料(ANC/CA)。采用扫描电镜、循环伏安、恒流充放电以及电化学阻抗等方法进行性能测试,结果表明,由于KOH的活化作用,含氮碳材料的粒径明显变小,其比电容值为138 F/g,高于未活化含氮碳材料(98 F/g),ANC/AC3复合材料电极的比电容值比ACA电极(88 F/g)高,达到127 F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号