首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

2.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

3.
Nafion‐coated antimony film electrode (NCAFE) was prepared in situ by simultaneously plated antimony with analytes, and applied to the determination of trace Pb(II) and Cd(II) in non‐deaerated solutions by differential pulse anodic stripping voltammetry (DPASV). Various experimental parameters, which influenced the response of the NCAFE to those metals, were thoroughly optimized and discussed. The results indicated that the sensitivity and resistance to surfactants at the NCAFE were remarkably improved with relative to the antimony film electrode (AFE). In the presence of 5 mg·L?1 gelatin, the peak heights at the NCAFE showed 4‐fold enhancement for Pb and a 9‐fold enhancement for Cd over a bare AFE. Reproducibility of the sensor was satisfactory, and the relative standard deviations were 4.8% for 20 μg·L?1 Pb and 3.2% for 25 μg·L?1 Cd (n=15) with preconcentration time of 180 s. The determination limits (S/N=3) of this sensor were determined to be 0.15 μg·L?1 for Pb and 0.30 μg·L?1 for Cd with accumulation time of 300 s. The NCAFE was successfully applied to determining Pb(II) and Cd(II) in vegetable and water samples with satisfactory results.  相似文献   

4.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery.  相似文献   

5.
Glassy carbon electrodes modified with conducting polymers of Ni(II), Zn(II) and metal free tetraruthenated porphyrin were evaluated for reduction and oxidation processes of S(IV) oxoanions in Na2SO3/water‐ethanol at pH 1.0 and 3.5, showing electrocatalytic activity. A Ni(II) film was able to reduce the S(IV) oxoanions selectively in presence of high concentration of gallic acid. The Ni(II) film was also used as an amperometric sensor toward S(IV) oxoanions reduction in white wine samples showing a detection and quantification limit of 1.40 mg L?1 and 4.68 mg L?1, respectively. These results are promising for the electrochemical determination of S(IV) using conducting polymers from these macrocycles.  相似文献   

6.
Three different commercial carbon nanomaterial-modified screen-printed electrodes based on graphene, carbon nanotubes and carbon nanofibers were pioneeringly tested as electrode platforms for the plating with Sb film. They were microscopically and analytically compared to each other and to the most conventional unmodified carbon screen-printed electrode (SPCE). The obtained detection and quantification limits suggest that the in-situ antimony film electrode prepared from carbon nanofibers modified screen-printed electrode (SbSPCE-CNF) produces a better analytical performance as compared to the classical SPCE modified with antimony for Pb(II) and Cd(II) determination, approving its appropriateness for measuring low μg L−1 levels of the considered metals. In-situ SbSPCE-CNF was successfully used for the simultaneous determination of Pb(II) and Cd(II) ions, by means of differential pulse anodic stripping voltammetry, in a certified reference estuarine water sample with a very high reproducibility and good trueness.  相似文献   

7.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

8.
This work reports the trace determination of Tl(I) by square‐wave anodic stripping voltammetry (SWASV) on novel microsensors equipped with a bismuth‐film electrode (BiFE). The sensors were fabricated by a multistep microfabrication approach combining sputtering (to deposit the electrode materialm, bismuth‐ and the insulator SiO2, on the surface of a silicon wafer) and photolithography (to define the geometry of the sensor). The effect of the preconcentration time, the preconcentration potential and the SW stripping parameters were investigated. Using the selected conditions, the 3σ limit of detection was 0.6 µg L?1 of Tl(I) at a preconcentration time of 240 s and the percent relative standard deviation was 4.3 % at the 10 µg L?1 level (n=8). In order to eliminate the interference caused by Pb(II) and Cd(II), EDTA was added in the sample solution The method was successfully applied to the determination of Tl(I) in a certified lake water sample. These new sensors exhibit excellent mechanical stability and offer wide scope as mercury‐free disposable sensors for trace metal analysis.  相似文献   

9.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

10.
A carbon screen‐printed electrode modified in‐situ with lead film (PbF‐SPCE) was applied for the adsorptive stripping voltammetric determination of Co(II) in the form of a complex with 1,2‐cyclohexanedione dioxime. Lead film was electrochemically deposited in situ on SPCE from a 0.2 M ammonia buffer solution (pH 8.7) containing 5 ? 10?5 M Pb(NO3)2 and 5 ? 10?5 M nioxime. Due to the very low LOD (0.003 µgL?1, i.e., 0.05 nmol L?1 Co(II); tacc=120s), the developed procedure could be rated among the most sensitive methods employing SPEs. The Ni(II) signal was significantly lower than the Co(II) one and the separation of Ni(II) and Co(II) peaks was even better at the PbF‐SPCE than at the hanging mercury drop electrode.  相似文献   

11.
Nickel is one of the heavy metals which has been considered as a serious pollutant affecting the human health. Therefore, it is necessary to control its concentration in foods and drinks. Recently, ion‐imprinted polymer based electrochemical sensors have been attracted lots of attention due to their valuable selectivity and sensitivity toward target analytes. In this study, Ni(II)‐1,10‐phenanthroline complex was prepared in ethanol and added stepwise to the aqueous solution of dopamine, followed by pH adjustment for self‐polymerization of dopamine in alkaline conditions. During the polymerization process, Ni(II)‐imprinted polydopamine (Ni‐PDA) was formed due to effective interactions between polydopamine and 1,10‐phenanthroline ligands carrying Ni(II) ions. A thin film of Ni‐PDA was anchored on a glassy carbon electrode (GCE) through a simple casting procedure. After drying, the sensor was employed for the determination of Ni(II) ions by means of differential pulse voltammetry. Under optimum conditions, a linear calibration curve was obtained in the range 1–25 μM with the detection limit of 0.39 μM (S/N=3). Due to excellent selectivity to Ni(II) ions, the sensor was not suffered from the excess amount of interfering ions and used for Ni(II) determination in different water and tea samples.  相似文献   

12.
《Electroanalysis》2004,16(16):1311-1317
The determination of some toxic metals by stripping chronopotentiometry with a supporting solution having an unconventional composition has been investigated with the aim of using such components in disposable measuring cells preservable in dry state and quite ready for use, only needing addition of a small volume of sample. The new supporting solution is prepared with a solid strong acid, p‐toluenesulfonic acid, in the place of the inorganic acids commonly used to improve the cation availability. The other components are, as usual, sodium chloride, which fixes the potential of the screen‐printed silver – silver chloride reference electrode, and mercury(II) chloride as the plating agent. This supporting solution has been tested in batch measurements with the mercury film glassy carbon electrode as well as with screen‐printed carbon‐ink electrodes, either with mercury film or bare. The physical shape of the mercury layer electrolytically deposited on screen‐printed carbon‐ink electrodes from a supporting solution containing 0.1 M p‐toluenesulfonic acid and 0.1 M sodium chloride has been investigated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) microanalysis. In chronopotentiometric stripping p‐toluenesulfonic acid performs as well as the usual inorganic strong acids, particularly in terms of sensitivity. At 0.1 mol dm?3 it proved very suitable for the determination of toxic metals, in particular lead(II), at levels down to a few μg dm?3. The overall results appear promising and can open new avenues for preparing disposable cells for on‐field stripping chronopotentiometric determination of toxic metals.  相似文献   

13.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

14.
This work describes electrocatalytic detection of S(IV) compounds in water‐ethanol solutions under acidic conditions, on a glassy carbon electrode modified with Co(II) tetraruthenated porphyrin electrostatically assembled onto a Nafion film. The Ipc current shows a linear relationship with the concentration of S(IV) oxo‐anions. Controlled potential electrolysis shows that thiosulfate was detected as reaction product. Rotating disk electrode and UV‐visible spectroelectrochemistry experiments showed a kinetic limitation to the electron transfer controlled by charge propagation in the film and the formation of an intermediary between Co center and S(IV) species. The reproducibility of the modification methodology presents a RSD of 4.1%.  相似文献   

15.
Anodic stripping voltammetry combined with sequential injection analysis (ASV‐SIA) was selected to examine the use of bismuth‐ and antimony‐film plated glassy carbon electrodes under comparable conditions for the determination of Pb(II) and Cd(II) ions. Of interest were the conditions for film deposition, as well as the composition of sample/carrier solutions, including concentrations of Sb(III) or Bi(III) and HCl. Then, by the optimized procedure, one could determine Pb(II), Cd(II), and Zn(II) ions at the low µg L?1 level and ASV‐SIA configuration with both electrodes tested on analysis of a water sample.  相似文献   

16.
Poly(o‐anisidine) (POA) was formed by successive cyclic voltammetry in monomer solution containing sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed. The capability of this modified electrode for catalytic oxidation of folic acid was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for folic acid oxidation were calculated. The catalytic oxidation peak current of folic acid was linearly dependent on its concentration and a linear calibration curve was obtained in the range of 0.1 to 5 mM with a correlation coefficient of 0.9994. The limit of detection (3σ) was determined as 0.091 mM. This electrocatalytic oxidation was used as simple, selective and precise voltammetric method for determination of folic acid in pharmaceutical preparations.  相似文献   

17.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

18.
A new carbon‐based mercury thin‐film electrode consisting of screen‐printed carbon on a low temperature co‐fired ceramic substrate was made. Ex‐situ mercury deposition in a potassium thiocyanate solution was used. This approach an electrode with high long‐term stability (>500 measurement cycles) and reproducibility (≤2 %) for sensitive determination of ultra trace heavy metals, using differential pulse anodic stripping voltammetry. The detection limits were 0.25, 0.08 and 5.5 ng mL?1 for Cd(II), Pb(II), and Zn(II), respectively. The method was applied to the determination of the analytes in water, wastewater, lake water, and certified reference material samples with satisfactory results.  相似文献   

19.
This study investigates the electrocatalytic oxidation of glucose and some other carbohydrates on nickel/poly(o‐aminophenol) modified carbon paste electrode as an enzyme free electrode in alkaline solution. Poly(o‐aminophenol) was prepared by electropolymerization using a carbon paste electrode bulk modified with o‐aminophenol and continuous cyclic voltammetry in HClO4 solution. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the capability of this modified electrode for catalytic oxidation of glucose and other carbohydrates was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for each carbohydrate were calculated. Also, the electrocatalytic oxidation peak currents of all tested carbohydrates exhibit a good linear dependence on concentration and their quantification can be done easily.  相似文献   

20.
Silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film modified glassy carbon electrode was prepared by means of electrostatically trapping the silicomolybdate anion in the cationic film. The PLL‐GA‐SiMo film was stable and the charge transport through the film was fast. The modified electrode shows excellent electrocatalytic activity towards hydrogen peroxide reduction with significant reduction of overpotential, however, not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL‐GA‐SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号