首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
《Electroanalysis》2005,17(19):1789-1794
Electropolymerized membranes on gold electrodes doped with 2,4‐dichlorophenoxyacetic acid (2,4‐D) were prepared from a solution containing resorcinol, o‐phenylenediamine and 2,4‐D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interaction of 2,4‐D with the polymer matrix prior to and after the sensing experiments. The FTIR data indicate that 2,4‐D does not leach appreciably from the polymer matrix under experimental conditions employed for the sensing studies. The electrochemical current response for 2,4‐D is compared for the doped polymer‐coated and control polymer‐coated electrode. The response of the doped polymer‐electrode was dependent on increasing concentrations of 2,4‐D and 2,4‐dichlorophenol while unresponsive to benzoic acid.  相似文献   

2.
In this study, we report the development of a sensitive label‐free impedimetric sensor based on molecularly imprinted polymer (MIP) as biomimetic receptor coupled with screen‐printed electrodes (SPEs) for the detection of vascular endothelial growth factor (VEGF). Firstly, electropolymerization of o‐phenylenediamine (o‐PD) in the presence of VEGF molecule by cyclic voltammetry was performed onto graphite screen‐printed electrodes. The solvent extraction of the target was then carried out. The MIP based sensor was characterized by electrochemical techniques and scanning electron microscopy (SEM). Using optimized experimental conditions, the single‐use MIP‐based sensor showed a good analytical performance for VEGF detection from 20 to 200 pg mL?1 with limit of detection of 0.08 pg mL?1. Finally, the developed MIP‐based sensor in human serum samples was also tested.  相似文献   

3.
In this study, a molecularly imprinted polymer (MIP) was synthesized by electrochemical polymerization and used to construct an electrochemical sensor for determination of meldonium (MEL) selectively for the first time. The polymer film was generated by using o‐phenylenediamine (o‐PD) as a monomer on the surface of carboxylic acid functionalized multiwalled carbon nanotube (MWCNT) modified pencil rod electrode in the presence of MEL as a template. MEL imprinted (MELimp) and non‐imprinted (N‐imp) polymer films and coated electrodes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), profilometry, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Voltammetric measurements were carried out in a ferrocyanide/ferricyanide redox probe solution for MELimp and N‐imp electrodes in the presence and absence of template molecule. The decrease in peak current of redox probe was linear with the concentration of MEL in the range of 0.1–5 μg/mL and the limit of detection (3 s/b) was found to be 0.066 μg/mL under optimized experimental conditions. The proposed sensor was successfully applied for selective determination of MEL in human urine sample with long term stability and good reproducibility.  相似文献   

4.
We report a novel approach for selective determination of p‐phenylenediamine in hair dyes using β‐MnO2 nanowires modified glassy carbon (GC) electrodes through an electrochemical co‐deposition process with chitosan hydrogel. A special CE (chemical reaction and electron transfer) process on the surface of β‐MnO2 nanowires modified GC electrode is proposed and proved by cyclic voltammetry and UV‐Vis spectroscopy in the presence of p‐phenylenediamine. p‐Phenylenediamine can react with MnO2 nanowires to produce diimine and the equilibrium of the two‐electron and two‐proton redox process of p‐phenylenediamine on the electrode is changed, and consequently the reductive current is enhanced significantly. At a constant potential of 0 V vs. SCE, other main components of hair dyes including o‐, m‐phenylenediamine, catechol, resorcinol, and p‐dihydroxybenzene do not interfere in the determination of p‐phenylenediamine in the amperometric measurement because of their much lower chemical reaction activities with MnO2 nanowires. It shows a determination range of 0.2–150 μM and a low detection limit of 50 nM to response p‐phenylenediamine. This modified electrode is successfully used to analyze the amount of p‐phenylenediamine in hair dyes without preseparation procedures.  相似文献   

5.
A molecularly imprinted polymer (MIP) based capacitive sensor for antibiotic detection in drinking water and milk has been developed on a gold coated silicon electrode (Au Electrode). The electrode was fabricated by electropolymerizing monomer resorcinol (RN) on Au surface in presence of sulphanilamide (SN) as a template molecule, to get insulated RN polymer antibiotic composite. The insulation of the polymer film was improved by incubation of electrode in 1‐Dodecanethiol solution. Subsequently MIP sensor was obtained by extraction of SN in ethanol and acetic acid solution. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were performed for characterization of the developed MIP electrode at different steps of fabrication. The surface morphology of MIP electrode was characterized using atomic force microscopy (AFM), X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDS). Performance of MIP sensor was evaluated by measuring change in capacitance against varying concentration of SN using EIS. A linear response in the range 1 to 200 μg L?1 SN was recorded for MIP sensor with a detection limit of 0.1 μg L?1. The developed MIP sensor exhibited good selectivity towards SN in water and milk with recoveries in the range 92 % to 105 %. The obtained results suggest the usability of MIP based sensor for SN estimation in water and milk samples.  相似文献   

6.
By diazotization of 3‐(2‐aminophenyl)‐1,2‐dihydroquinoxaline 1c, its 3‐(4‐aminophenyl)‐isomer 2c , 3‐(2‐aminobenzyl)‐1,2‐dihydroquinoxaline‐2‐one 3c and its 3‐(4‐aminobenzyl)‐isomer 4c and by azo coupling of formed diazonium salts with ethyl cyanoacetylcarbamate, corresponding hydrazones ld‐4d were prepared. Cyclization of these compounds afforded compounds containing two heterocyclic rings with acidic N‐H groups in their molecules: 3‐[2‐(5‐cyano‐6‐azauracil‐1‐yl)‐phenyl]‐1,2‐dihydroquinoxaline‐2‐one 1e , its 4‐isomer 2e , 3‐[2‐(5‐cyano‐6‐azauracil‐1‐yl)‐benzyl]‐1,2‐dihydroquinoxaline‐2‐one 3e and its 4‐isomer 4e . The aminoderivative 1c was prepared by the reaction of N‐acetylisatine with o‐phenylenediamine and by hydrolysis of prepared N‐acetylderivative 1a . The aminoderivative 2c was prepared by the condensation of 4‐acetylaminophenylglyoxylic acid with o‐phenylenediamine and by hydrolysis of prepared N‐acetylderivative 2a . The aminoderivative 3c was prepared by the condensation of 2‐nitrophenylpyruvic acid with o‐phenylenediamine and by the reduction of the formed nitroderivative 3b and finally starting aminoderivative 4c was obtained by the condensation of o‐phenylenediamine with 4‐aminophenylpyruvic acid.  相似文献   

7.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

8.
The mycotoxin zearalenone (ZEA) prompts reproductive toxicity due to its strong estrogenic effects. In this work, an electrochemical sensor for determination of ZEA was developed by electropolymerization of a molecularly imprinted poly (o‐phenylenediamine) (PPD) film on screen‐printed gold electrode (SPGE) surface. The sensor was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using K3[Fe(CN)6]/K4[Fe(CN)6] as redox probe. The molecularly imprinted polymer (MIP) sensor showed a wide determination range from 2.50 to 200.00 ngmL?1 for ZEA. The Limit of detection (LOD) was calculated to be 0.20 ngmL?1, based on the signal to noise (S/N) ratio equal to 3.0. The sensor displayed good repeatability, with RSD values≤4.6 %, and maintained 93.2 % of its initial response after storage for 10 days in air at room temperature. The developed method was successfully applied for the determination of ZEA in corn flakes with mean recoveries ranged from 96.2 % to 103.8 % and RSDs within the interval of 2.1 % to 3.8 %.  相似文献   

9.
邻苯二胺的电聚合及膜氧化还原过程的研究   总被引:2,自引:0,他引:2  
石英晶体微天平;循环伏安法;邻苯二胺的电聚合及膜氧化还原过程的研究  相似文献   

10.
An electrochemical sensor based on electropolymerizing o‐phenylenediamine (o‐PD) on a glassy carbon electrode (GCE) was developed for determination of reducing sugars. The molecular imprinted sensor was tested by differential pulse voltammetry (DPV) to verify the changes in peak currents of hexacyanoferrate. Under the optimum analytical conditions, the current change was linear to the logarithm of glucose and fructose concentration from 0.25 to 25 µM. The detection limit of glucose and fructose were 0.185 µM and 0.173 µM, respectively. Besides, the applicability of the sensitive sensor has been successfully evaluated by determining reducing sugars in the samples from sugarcane industries.  相似文献   

11.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

12.
In this study, a highly sensitive, selective and cost‐effective electrochemical nano‐sensor has been developed for the first time so as to facilitate the simultaneous and low‐level detection of acetaminophen (paracetamol, PAR), ascorbic acid (A) and acetylsalicylic acid (ASA) ternary mixture. The sensor is based on nano‐sepiolite clay (SEP) with multiwall carbon nanotubes (MWCNTs) onto electrochemically pretreated pencil graphite electrode (pPGE). The surface properties of the sensor were examined by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) techniques. The pH effect, composition of modifiers, immobilization time, deposition potential and deposition time values were optimized to reach the best response of PAR, A and ASA. Moreover, in optimum analytical conditions, adsorptive stripping differential pulse voltammmetric (AdsDPV) method was developed for the simultaneous analysis of the ternary mixtures concerned by using SEP/MWCNTs/pPGE sensor. This sensor exhibited the low detection limits of 0.018, 0.042 and 0.047 μM for PAR, A and ASA ternary mixture, respectively. The developed AdsDPV method was applied for quantitative determination of PAR, A and ASA in the pharmaceutical formulation. The recovery experiments were carried out to control the accuracy and precision of the method. The obtained voltammetric recoveries were comparable with the HPLC data given in the literature.  相似文献   

13.
分子印迹聚合物修饰电化学晶体管检测抗坏血酸分子   总被引:1,自引:0,他引:1  
以抗坏血酸(AA)为模板分子、邻苯二胺(o-PD)为功能单体,在金电极表面电聚合制备分子印迹聚合物膜(MIP),并以该MIP修饰的电极为栅极制备了具有高选择性、高灵敏度的AA电化学晶体管(OECT)传感器件。应用循环伏安法(CV)、交流阻抗法(EIS)对分子印迹聚合物电极进行一系列的表征与检测。实验结果表明:以pH=5.2,浓度为0.2mol/L HAc-NaAc(体积比2.1∶7.9)的缓冲液为背景溶液,o-PD与AA的物质的量之比为1∶2,以0.5V/s的扫描速率在0~0.8V内扫描20圈,所得分子印迹膜电极性能最佳。应用以该分子印迹修饰电极作为栅极的电化学晶体管检测AA,得到AA浓度的检测限为0.3μmol/L,沟道电流与AA浓度在0.3~3μmol/L(低浓度)与3~100μmol/L(高浓度)这2个范围内成线性关系。  相似文献   

14.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   

15.
A flexible composite paper Fe?Cu‐based metal‐organic framework (MOF)/reduced graphene oxide (rGO) (Fe?CuMOF/rGO) electrode was prepared by using a simple electrochemical method for the simultaneous detection of catechol (CC) and resorcinol (RC). Free‐standing, flexible and double‐sided Fe?CuMOF/rGO composite paper was obtained by applying the electrochemical deposition process on the rGO paper electrode in the solution containing Fe?CuMOF composite. The morphological analysis of Fe?CuMOF/rGO composite paper showed that sea urchin‐like structures formed on the rGO electrode surface consist of numerous sharp‐edged nanorods of Fe?CuMOF. Flexible Fe?CuMOF/rGO paper electrode exhibited high sensitivity, wide linear range and low detection limit for the simultaneous determination of CC and RC. The linear ranges of concentration for CC and RC were 0.1–800 and 0.1–720 μM, respectively, and the corresponding limits of detection (S/N=3) were 0.016 and 0.020 μM. The outstanding performance of this flexible electrode could be attributed to the sharp‐edged urchin‐like Fe?CuMOF structures which provide an increment of the surface area and the electrochemical activity of the composite paper electrode. Stability tests showed that Fe?CuMOF/rGO composite paper electrode has excellent flexibility, high durability, and good reproducibility. Furthermore, this electrode exhibited high sensitivity and selectivity for the determination of CC and RC in real sample analysis.  相似文献   

16.
The use of biomass‐sourced chemical feedstocks creates a conflict over land use between food and fuel/chemical production. Such conflict could be reduced by making use of the annual 1.3 Pg food waste resource. Oleic acid is available from seed oils such as pumpkin, grape, avocado and mango. Its esterification with diols 1,3‐propanediol, resorcinol and orcinol was used to form diesters and the naturally occurring norspermidine was used to prepare a diamide, all under ambient conditions. These compounds were then epoxidized and polymerized. When esterification was followed by epoxidation and subsequent curing at elevated temperature with p‐phenylenediamine or diethylenetriamine, hard insoluble resins were formed. When the sequence was changed such that the epoxidized oleic acid was first reacted with cis‐1,2‐cyclohexanedicarboxylic anhydride and then esterified with orcinol and resorcinol, insoluble crosslinked polymers were also obtained. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3159–3170  相似文献   

17.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

18.
In this work, low‐cost and environmentally friendly natural zeolite exchanged with Mn2+ cations was used for the first time to modify the glassy carbon electrode with the aim to obtain a fast and simple sensor for voltammetric determination of paracetamol (PAR). The Mn‐zeolite/graphite modified glassy carbon electrode (MnZG?GCE) was prepared by evaporation of solvent from dispersion of the zeolite/graphite mixture with the polymer in acetone. The electrochemical characteristics of MnZG?GCE were conducted by electrochemical impedance spectroscopy and cyclic voltammetry. Compared with graphite modified GCE (G?GCE), MnZG?GCE exhibited better electrochemical parameters, which confirms the superiority of applying zeolite in the proposed sensor. The optimization of the pH‐value of supporting electrolyte and instrumental parameters were carried out. The peak current was proportional to the concentration of PAR in a phosphate buffer saline of pH 6.0 in the range from 0.029 to 0.69 mg L?1 (R=0.9997) with limit of detection of 8.8 μg L?1. Finally, the proposed electrode was successfully applied to determine the paracetamol in pharmaceutical formulation and certified reference materials. The satisfactory recoveries, which ranged from 89.2 to 102.7 %, were obtained for all studied samples. It confirmed the attractiveness of relatively inexpensive, easy to fabricate and non‐toxic MnZG?GCE in determination of PAR in complicated matrixes.  相似文献   

19.
The novel cyanothioformamides 2a‐d were prepared by treatment of isothiocyanatosulfonamides 1a‐d with potassium cyanide at room temperature. Cyclocondensation of compounds 2b,c with phenyl isocyanate as electrophile furnished the corresponding imidazolidines 3a,b . The reactivity of compound 3a towards some nitrogen nucleophiles was investigated. Thus, the thiosemicarbazone 4 and imidazo[4,5‐b]quinoxaline 6 were synthesized by condensation of compound 3a with thiosemicarbazide and o‐phenylenediamine, respectively. Treatment of 3a with hydrochloric acid afforded compound 7 . Our investigation was extended to include the reactivity of cyanothioformamide 2 towards o‐aminophenol, anthranilic acid, and o‐phenylenediamine and yielded the corresponding heterocycles 9 , 11 and 13 derivatives, respectively. Structures of the synthesized compounds were established by their elemental analysis and spectral data.  相似文献   

20.
Molecularly imprinted polymers(MIPs) were applied as molecular recognition elements to an electrochemical sensor for cinchonidine(CD). A kind of MIP was synthesized with cinchonidine as template, modified rosin( ethylene glycol maleic rosinate acrylate) containing the skeleton of phenanthrene rings as cross-linker and methylacrylic acid as functional monomer. MIP membrane was prepared on a glassy carbon electrode for the determination of CD via free radical polymerization method. Electrochemical impedance spectroscopy(EIS) and cyclic voltammetry( CV) were used to characterize the membrane electrochemical behavior in electrode fabrication process. The experimental conditions were discussed. Under optimum conditions, it was found that the response of peak currents was linear to the concentration of CD in a range of 0.013―2.26 mmol/L. The detection limit for CD is 1 μmol/L, the relative standard deviation for 100 μmol/L CD is 1.34% and the incubation time is 2 min. The sensor was applied to the determination of CD in urine samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号