首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

2.
Poly(vinyl chloride) polymeric membrane sensors containing Sn(IV) phthalocyanine dichloride (SnPC) and Co(II) phthalocyanine (CoPC) as novel electroactive materials dispersed in o‐nitrophenyl octylether (o‐NPOE) as a plasticizer are examined potentiometrically with respect to their response toward selenite (SeO32?) ions. Fast Nernstian response for SeO32? ions over the concentration ranges 7.0×10?6–1.0×10?3 and 8.0×10?6–1.0×10?3 mol L?l at pH 3.5–8.5 with lower detection limit of 5.0×10?6 and 8.0×10?6 mol L?1 and calibration slopes of ?25.4 and ?29.7 mV decade?1 are obtained with SnPC and CoPC based membrane sensors, respectively. The proposed sensors reveals by the modified separate solution method (MSSM) a good selectivity over different anions which differ significantly from the classical Hofmeister series. A segmented sandwich membrane method is used to determine complex formation constants of the ionophores in situe in the solvent polymeric sensing membranes. Membrane incorporating CoPC in a tubular flow detector is used in a two channels flow injection set up for continuous monitoring of selenite at a frequency of ca. 50 samples h?1. Direct determination of selenium in pharmaceutical formulations and anodic slime gives results in good agreement with data obtained using standard ICP method.  相似文献   

3.
《Electroanalysis》2005,17(21):1945-1951
Tin(IV) porphyrins derivatives were used as ionophores for phthalate selective electrodes preparation. The influence of ionophore structure and membrane composition (amount of incorporated ionic sites) on the electrode response, selectivity and long‐term stability were studied. Poly(vinyl chloride) polymeric membranes plasticized with o‐NPOE (o‐nitrophenyloctylether) and containing Sn(IV)‐tetraphenylporphyrin (TPP) dichloride (Sn(IV)[TPP]Cl2) or Sn(IV)‐octaethylporphyrin (OEP) dichloride (Sn(IV)[OEP]Cl2), and in some cases incorporating lipophilic cationic (tetraocthylammonium bromide ‐ TOABr) and anionic (sodium tetraphenylborate – NaTPB and potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate‐KTFPB) additives, were prepared and their potentiometric characteristics compared. Both ionophores are shown to operate via a neutral mechanism, and the addition of 10 mol % of lipophilic quaternary ammonium salt derivative to the membrane is required to achieve optimal electrode performance. The potentiometric units prepared, with Sn(IV)[TPP]Cl2 (Type A) or Sn(IV)[OEP]Cl2 (Type B) without additives, presented a slope of ?52.8 mV dec?1 and ?58.8 mV dec?1 and LLLR of 9.9×10?5 mol L?1 and 9.9×10?6 mol L?1, respectively. The units prepared using the same metalloporphyrins and incorporating 10% mol TOABr presented a slope of ?55.0 mV dec?1 and ?57.8 mV dec?1 and LLLR of 5.0×10?7 mol L?1 and 3.0×10?7 mol L?1. Their analytical usefulness was assessed by potentiometric determinations of phthalate in water and industrial products providing results that presented recoveries of about 100%.  相似文献   

4.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

5.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on Co(III)-Schiff base [Co(5-NO2- Salen)(PBu3)]ClO4•H2O (where 5-NO2-SalenH=bis(5-nitrosalycilaldehyde)ethylenediamine) as a new carrier for construction of perchlorate-selective electrode by incorporating the membrane ingredients on the surface of a graphite electrodes has been reported. The proposed electrode possesses a very wide Nernestian potential linear range to perchlorate from 1.0×10-6 to 5.0×10-1 mol•L-1 with a slope of (59.4±0.9) mV per decade of perchlorate concentration with a low detection limit of 5.0×10-7 mol•L-1 and good perchlorate selectivity over the wide variety of other anions. The developed electrode has an especially fast response (<5 s) and a wide pH independent range (3.0—12.0) in comparison with recent reported electrodes and can be used for at least 2 months without any considerable divergence in their potential response. This electrode was used for the determination of perchlorate in river water, drinking water, sludgy water and human urine with satisfactory results without complicated and time consuming pretreatment.  相似文献   

6.
The construction and general performance characteristics of two poly(vinyl chloride) matrix chemical sensors for lead were described. These sensors were based on the use of ion association complexes of trihydroxoplumbate, [Pb(OH)3]? and tetraiodoplumbate, [PbI4]2?with cetylpyridinium chloride (CP) and iron(II)‐4,7‐bathophenanthroline [Fe(bphen)3]2+ as novel electroactive materials dispersed in o‐nitrophenyloctyl ether (o‐NPOE) plasticizer for ionometric sensor controls, respectively. The sensing membrane (3×5 mm) is immobilized on a wafer polyimide chip (size 13.5×3.5 mm) to offer a planar miniaturized design that could be easily used flow injection system. Under static modes of operation, the sensors revealed a near Nernstian response over a wide Pb2+ ion concentration range 7.9×10?7 to 10?4 and 3.2×10?7 to 10?4 mol L?1 with detection limit of 100 and 45.5 ng mL?1, respectively . In flow injection potentiometry, excellent reproducibility (RSD%=0.5%), fast response, high sensitivity, high sampling rate (50 sample h?1) and stable baseline was observed in the presence of 5×10?2 mol L?1 NaOH and 10?1 mol L?1 KI as a carrier for [CP][Pb(OH)3] and [Fe(bphen)3][PbI4] membrane based sensors, respectively. Validation of the assay method according to the quality assurance standards (range, within‐day repeatability, between‐day variability, standard deviation, accuracy, lower detection limit) reveals good performance characteristics and suggests application for routine determination of lead in industrial wastewaters and stack emissions of lead smelters. The results agree fairly well with data obtained by the standard atomic absorption methods.  相似文献   

7.
Tetrakis­(chloro­methyl)­phospho­nium chloride monohydrate, C4H8Cl4P+·Cl?·H2O or P(CH2Cl)4+·Cl?·H2O, is the first crystal structure determination of a tetrakis­(halogeno­methyl)­phospho­nium compound to date. The only comparable structures known so far are of phospho­nium ions containing just one halogeno­methyl group. The solvent water mol­ecule interacts with the Cl? anion via hydrogen bonds, with O?Cl distances of 3.230 (2) and 3.309 (2) Å. The structure also contains several C—H?Cl? and C—H?O contacts, though with longer D?A distances [D?A 3.286 (3)–3.662 (2) Å] or bent D—H?A angles. For these reasons, the C—H?Cl? and C—H?O interactions should not be considered as strong hydrogen bonds.  相似文献   

8.
Metal‐organic frameworks (MOFs) as new classes of proton‐conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton‐conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(μ3‐HPhIDC)(μ2‐C2O4)0.5(H2O))?2 H2O}n (M=Tb ( ZZU‐1 ); Eu ( ZZU‐2 )) (H3PhIDC=2‐phenyl‐1H‐imidazole‐4,5‐dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high‐performance proton conduction and recognition ability for formic acid. Both ZZU‐1 and ZZU‐2 show temperature‐ and humidity‐dependent proton‐conducting characteristics with high conductivities of 8.95×10?4 and 4.63×10?4 S cm‐1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF‐based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10?2 mol L?1 by ZZU‐1 and 2.0×10?2 mol L?1 by ZZU‐2 . Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N‐hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton‐conductive MOFs‐based sensors for detecting formic acid.  相似文献   

9.
Anion‐selective solvent polymeric membrane based on hydrogen bond‐forming, neutral ionophores with amide or acyl‐hydrazine groups are described. The use of the two calix[4]arenes results in anion‐selective electrodes with a selectivity for phosphate. The electrodes of the optimum characteristic have the composition of 1 wt% ionophore, 66 wt% o‐NPOE, 33 wt% poly (vinyl chloride) (PVC) and TDMACl (15 or 30 mol% relative to the ionophore 1 and 2 , respectively). The optimized membrane electrodes show Nernstian responses towards monohydrogen phosphate (?29.1 and ?29.3 mV/decade) based on ionophore 1 and 2 , respectively, in a wide concentration range (1.0×10?5 to 1.0×10?2 or 1.0×10?5 to 1.0×10?1 M). The selectivity coefficients are determined with the fixed interference method and the activity ratio method. The electrodes display an anti‐Hofmeister series selectivity pattern and highly selective for HPO42? over Cl?, Br?, CH3COO?, NO3? and SO42?. The lifetime of the electrodes is at least 1 month and their response time is found to be 25 s. The proposed sensors could be put to analytical use both by direct potentiometry as well as potentiometric titration.  相似文献   

10.
In 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium chloride monohydrate, C13H12NS2+·Cl?·H2O, and 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium tri­chloro­acetate, C13H12­NS2+·­C2Cl3O2?, the terminal alkyne group forms C[triple‐bond]C—H?O hydrogen bonds of favourable geometry. The conformation of the flexible propargyl­thio group is different in the two structures.  相似文献   

11.
Two novel potentiometric polymeric membrane sensors for rapid and accurate determination of thorium are described. These are based on the use of trioctylphosphine oxide (TOPO) and thorium toluate (Th‐TA) as ionophores dispersed in poly(vinyl chloride) matrix membranes plasticized with nitrophenyloctyl ether. In strong nitric acid medium, Th(IV) nitrate is converted into [Th(NO3)6]2? complex and sensed as anionic divalent ion which exclude most cationic effect. Validation of the assay methods using the quality assurance standards (linearity range, accuracy, precision, within‐day variability, between‐day‐repeatability, lower detection limit and sensitivity) reveals excellent performance characteristics of both sensors. The sensors exhibit near‐Nernstian response for 1.0×10?6–1.0×10?1 M Th over the pH range 2.5–4.5. Calibration slopes of ?32.3±0.3 and ?27.2±0.2 mV/decade, precision of ±0.5 and ±0.8% and accuracy of 98.8±0.9 and 97.9±0.7% are obtained with TOPO and Th‐TA based sensors, respectively. Negligible interferences are caused by most interfering mono‐, di‐, tri‐, tetra‐, penta‐, and hexa‐valent elements commonly associated with thorium in naturally occurring minerals and ores. High concentrations of Cl?, F?, SO42?, and NO3? ions have no diverse effect. Complete removal of the effect of the interferents in complex matrices is achieved by retention of [Th(NO3)6]2? complex from 5 M nitric acid/methanol mixture (1 : 9 v/v) on a strong anion exchanger, washing out the cationic interferents followed by stripping off thorium anion complex and measurements. Both sensors are used for determining thorium in certified thorium ore samples (20–120 mg Th/kg) and some naturally occurring ores (200–600 mg Th/kg). The results obtained agree fairly well with the certified labeled values or the data obtained using X‐ray fluorescence spectrometry  相似文献   

12.
Substitution reactions of trans-[CoCl2(en)2]Cl (where en?=?ethylenediamine) with L-cystine has been studied in 1.0?×?10?1?mol?dm?3 aqueous perchlorate at various temperatures (303–323?K) and pH (4.45–3.30) using UV-Vis spectrophotometer on various [Cl?] from 0.05 to 0.01?mol?L?1. The products have been characterized by their physico-chemical and spectroscopic data. Trans-[CoCl(en)2(H2O)]2+, from the hydrolysis of trans-[CoCl2(en)2]+ in the presence of Cl?, formed a complex with L-cystine at all temperatures in 1?:?1 molar ratio. L-cystine is bidentate to Co(III) through Co–N and Co–S bonds. Product formation and reversible reaction rate constants have been evaluated. The rate constants for SNi mechanism have been evaluated and activation parameters E a, ΔH #, and ΔS # are determined.  相似文献   

13.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

14.
In the isomeric title compounds, viz. 2‐, 3‐ and 4‐(chloro­methyl)pyridinium chloride, C6H7ClN+·Cl?, the secondary interactions have been established as follows. Classical N—H?Cl? hydrogen bonds are observed in the 2‐ and 3‐isomers, whereas the 4‐isomer forms inversion‐symmetric N—H(?Cl??)2H—N dimers involving three‐centre hydrogen bonds. Short Cl?Cl contacts are formed in both the 2‐isomer (C—Cl?Cl?, approximately linear at the central Cl) and the 4‐isomer (C—Cl?Cl—C, angles at Cl of ca 75°). Additionally, each compound displays contacts of the form C—H?Cl, mainly to the Cl? anion. The net effect is to create either a layer structure (3‐isomer) or a three‐dimensional packing with easily identifiable layer substructures (2‐ and 4‐isomers).  相似文献   

15.
A facile, rapid and ultra‐sensitive method for the determination of vitamin B12 (cyanocobalamin) at the sub‐nanomolar concentration range by using low‐cost, disposable graphite screen‐printed electrodes is described. The method is based on the cathodic preconcentration of square planar vitamin B12s, as occurred due to the electro reduction of Co(III) center in vitamin B12a to Co(I), at ?1.3 V versus Ag/AgCl/3 M KCl for 40 s. Then, an anodic square wave scan was applied and the height of the peak appeared at ca. ?0.73 V versus Ag/AgCl/3 M KCl, due to the oxidation of Co(I) to Co(II) in the adsorbed molecule, was related to the concentration of the vitamin B12 in the sample. EDTA was found to serve as a key‐component of the electrolyte by eliminating the background signal caused by metal cations impurities contained in the electrolyte (0.1 M phosphate buffer in 0.1 M KCl, pH 3). It also blocks trace metals contained in real samples, thus eliminating their interference effect. The method was optimized to various working parameters and under the selected conditions the calibration curve was linear over the range 1×10?10–8×10?9 mol L?1 vitamin B12 (R2=0.994), while the limit of detection for a signal‐to‐noise ratio of 3 (7×10?11 mol L?1 vitamin B12) is the lowest value of any reported in the literature for the electrochemical determination of vitamin B12. The sensors were successfully applied to the determination of vitamin B12 in pharmaceutical products.  相似文献   

16.
《Electroanalysis》2006,18(21):2070-2078
A highly selective potentiometric sensor for thiocyanate ion based on the use of a newly synthesized organo‐palladium ion exchanger complex dispersed in a plasticized poly(vinyl chloride) membrane is described. The sensor displays a Nernstian response (?57.8±0.2 mV decade?1) over a wide linear concentration range of thiocyanate (1.0×10?6–1.0×10?1 mol L?1 ), low detection limit (6.3×10?7 mol L?1), fast response (20 s), stable potential readings (±0.4 mV), good reproducibility (±0.9%), long term stability (8 weeks), high precision (±0.7%) and applicability over a wide pH range (4–10). Negligible interferences are caused by F?, Cl?, I?, Br?, NO3?, NO2?, CN?, SO42?, S2O32?, PO43?, citrate, acetate and oxalate ions. Under hydrodynamic mode of operation (FIA), the calibration slope is ?51.1±0.1 mV decade?1, the linear response range is 1.0×10?5–1.0×10?1 mol L?1 SCN? and the sample throughput is 40–45 per hour. The sensor is satisfactory used for manual and flow injection potentiometric determination of SCN? in the saliva and urine of cigarette smokers and non smokers. The data agree fairly well with results obtained by the standard spectrophotometric technique. Direct potentiometry and potentiometric titration of SCN? with Ag+ are also monitored with the sensor.  相似文献   

17.
Thiourea derivative‐based carbon paste electrode (TUD1‐CPE) was constructed as a potentiometric sensor for the determination of salicylate anion in pharmaceutical formulations, Aspocid® and Aspirin®. The optimized CPE contained 45.5 % graphite, 0.5 % reduced graphene oxide (rGO), 46.0 % nitrophenyl octyl ether (NPOE) plasticizer, 5.0 % TUD1 ionophore, and 3.0 % tridodecylmethyl ammonium chloride as additive. The incorporation of NPOE of high dielectric constant, and rGO in electrode caused better performance of the sensor; Nernstian response of 59.0 mV decade?1 in the concentration range of 10?1–10?5 mole L?1, a detection limit of 1×10?5 mole L?1 in a very short response time of 6 seconds. The prepared sensor showed high selectivity against similar anions (i. e. , benzoate, I?, SCN?). Selectivity was confirmed by calculating the formation constant (Kβ) using sandwich membrane method, where Kβ for TUD1‐salicylate is 100.43. Theoretical calculations at DFT‐B3LY/6‐31G** level of theory were performed to find interaction mechanism, Energies of HOMO and LUMO orbitals, non‐linear optical (NLO) properties (the electronic dipole moment (μ), first‐order hyperpolarizability (β), the hyper‐Rayleigh scattering (βHRS) and the depolarization ratio (DR)), and other global properties; these calculations showed lower values of β and DR, higher value of βHRS, and the shortest lengths of the four N?H bonds between TUD1 and salicylate which confirm their strong complexation and salicylate‐selectivity. Also, all the studied anion‐TUD1 exhibited relatively high NLO properties, and these results were considered as a preliminary study for investigating new types of NLO bearing materials. The sensors were applied successfully for the determination of salicylate anion in Aspocid® and Aspirin®.  相似文献   

18.
A simple, rapid and a highly selective method for direct electrochemical determination of acebutolol hydrochloride (AC) was developed. The developed method was based on the construction of three types of sensors conventional polymer (I), carbon paste (II) and modified carbon nanotubes (MCNTs) carbon paste (III). The fabricated sensors depend mainly on the incorporation of acebutolol hydrochloride with phosphotungstic acid (PTA) forming ion exchange acebutolol‐phosphotungstate (AC‐PT). The performance characteristics of the proposed sensors were studied. The sensors exhibited Nernstian responses (55.6 ± 0.5, 57.14 ± 0.2 and 58.6 ± 0.4 mV mol L?1) at 25 °C over drug concentration ranges (1.0 × 10?6‐1.0 × 10?2, 1.0 × 10?7‐1.0 × 10?2 and 5.0 × 10?8‐1.0 × 10?2 mol L?1 with lower detection limits of (5.0 × 10?7, 5.0 × 10?8 and 2.5 × 10?8 mol L?1 for sensors (I), (II) and (III), respectively. The influence of common and possible interfering species, pharmaceutical additives and some related pharmacological action drugs was investigated using separate solution method and no interference was found. The stability indicating using forced degradation of acebutolol hydrochloride was studied. The standard addition method was used for determination of the investigated drug in its pharmaceutical dosage forms and biological fluids. The results were validated and statistically analysed and compared with those from previously reported methods.  相似文献   

19.
张忠海  库宗军  刘义  屈松生 《中国化学》2005,23(9):1146-1150
以氯化镝、甘氨酸和L-酪氨酸为原料合成了配合物Dy(Tyr)(Gly)3Cl3·3H2O. 用溶解-反应热量计测得配合物在298. 15K时的标准摩尔生成焓为–(4287. 10±2. 14) kJ / mol. 并用TG-DTG技术对配合物进行了非等温热分解动力学研究, 推断出配合物第二步热分解反应的动力学方程为: dα/dT=3. 14 ×1020 s-1/βexp(-209. 37 kJ / mol /RT)(1-α)2.  相似文献   

20.
In this work, the new polyamine bisnaphthalimidopropyl‐4,4’‐diaminodiphenylmethane is proposed as a new ionophore for perchlorate potentiometric sensors. The optimal formulation for the membrane comprised of 12 mmol kg?1 of the ionophore, and 68 % (w/w) of 2‐nitrophenyl phenyl ether as plasticizer and 31 % (w/w) of high molecular weight PVC. The sensors were soaked in water for a week to allow leakage of anionic impurities and for one day in a perchlorate solution (10?4 mol L?1) to improve reproducibility due to its first usage. The stability constant for the ionophore‐perchlorate association in the membrane, log βIL1=3.18±0.04, ensured a performance characterized by the slope of 54.1 (±0.7) mV dec?1 to perchlorate solutions with concentrations between 1.24×10?7 and 1.00×10?3 mol L?1. The sensors are insensitive to pH between 3.5 to 11.0, they have a practical detection limit of 7.66 (±0.42) ×10?8 mol L?1 and a response time below 60 s for solutions with perchlorate concentrations above 5×10?6 mol L?1. The accuracy of the results was confirmed by the analysis of the contaminant in a certified reference water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号