首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimized method for the isolation and identification of membrane proteins   总被引:12,自引:0,他引:12  
Lehner I  Niehof M  Borlak J 《Electrophoresis》2003,24(11):1795-1808
The purpose of this study was to develop a protocol suitable for membrane protein extraction from limited starting material and to identify appropriate conditions for two-dimensional (2-D) gel electrophoresis. We used A549 cells, a human alveolar type II cell line, and evaluated three protein extraction methods based on different separation principles, namely protein solubility, detergent-based and density-based organelle separation. Detergent-based extraction achieved the highest yield with 14.64% +/- 2.35 membrane proteins but sequential extraction with 7.35% +/- 0.78 yield and centrifugal extraction with 4.1% +/- 0.54 yield produced the purest fractionation of membrane proteins. Only the sequential and the detergent-based extraction proved suitable for small volumes of starting material. We identified annexin I + II, electron transfer flavoprotein beta-chain, H(+)-transporting ATP synthase, mitofilin and protein disulfide isomerase A3 as membrane and cytokeratin 8 + 18, actin and others as soluble proteins using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis and started to map the A549 cell proteome. Our data suggest that membrane proteins can be extracted efficiently from small samples using a simple sequential protein extraction method. They can be separated and identified successfully using optimized conditions in 2-D gel electrophoresis. The presented methods will be useful for further investigations of membrane proteins of alveolar and bronchial carcinomas.  相似文献   

2.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

3.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   

4.
Urine is a source of potential markers of disease. In the context of renal disease, urine is particularly important as it may directly reflect kidney injury. Current markers of renal dysfunction lack both optimal specificity and sensitivity, and improved technologies and approaches are needed. There is no clear consensus about the best sample pretreatment procedure for 2DE analysis of the urine proteome. Sample pretreatment conditions spots resolution and detection sensitivity, critically. As a first goal, we exhaustively compared eight different sample cleaning and protein purification methodologies for 2DE analysis of urine from healthy individuals. Oasis® HLB cartridges allowed the detection of the highest number of low molecular weight proteins; while PD10 desalting columns resulted in the highest number of detected spots in the high molecular weight area. Sample pretreatment strategies were also explored in the context of proteinuria, a clinical condition often associated to renal damage. Testing of urine samples from 13 patients with hypertension or kidney disease and different levels of proteinuria identified Oasis® HLB cartridge purification in combination with albumin depletion by ProteoPrep kit as the best option for urine proteome profiling from patients with proteinuric (> 30 mg/L albumin in urine) renal disease.  相似文献   

5.
The isoforms distribution of the glycoprotein antithrombin III (ATIII) derived from human plasma was investigated by means of isoelectric focusing (IEF) in polyacrylamide gels with immobilized pH gradients (IPG) and two-dimensional gel electrophoresis (2-DE) as well as capillary electrophoretic methods. It turned out that the presence of high concentrations of chaotropics (urea, thiourea) and zwitterionic detergents (3-[(3-cholamidepropyl)dimethylammonio]-1-propanesulfonate (CHAPS)) was decisive for attaining good resolution of the protein isoforms. Resolution by IPG-IEF was obtained with excellent reproducibility and pI differences down to 0.01 pH units could be distinguished. ATIII-alpha and ATIII-beta-fractions preseparated by heparin affinity chromatography showed an analogous but shifted spot pattern consisting each of one major and three minor isoforms. The main isoforms of ATIII-alpha and ATIII-beta exhibit pI values of 5.18 and 5.32, respectively, both values determined in the presence of high concentrations of urea. The pI difference of 0.14 pH units correspond to the effect of two sialic acids absent in ATIII-beta. The formation and occurrence of ATIII dimers and trimers turned out to be dependent on the sample preparation. The results obtained by 2-DE were compared with those of capillary zone electrophoresis (CZE) and capillary IEF (CIEF). Quantitative analysis regarding the CZE separated isoforms of plasma derived ATIII yielded a content of about 70% ATIII-alpha main isoform and about 6.6% of ATIII-beta. The pI values of ATIII determined by CIEF with internal calibration were in fair agreement with the pI values of the main isoforms achieved with 2-DE.  相似文献   

6.
Membrane proteins are rarely identified in two-dimensional electrophoretic (2-DE) proteomics maps. This is due to low abundancy, poor solubility, and inherent hydrophobicity leading to self-aggregation during the first dimension. In this study, membrane proteins from the Gram-positive bacterium Streptococcus mutans were solubilized using three different methods and evaluated by 2-DE. In the first method, the extraction was performed using sodium dodecyl sulfate (SDS) followed by solubilization with a chaotropic buffer and precipitation with methanol/chloroform. The second method was based on temperature-dependent phase partitioning using Triton X-114 followed by purification using the ReadyPrep 2-D clean-up kit from Bio-Rad. The third method involved extraction using the organic solvents trifluoroethanol (TFE) and chloroform, which produced three separate phases. The upper aqueous phase, enriched with TFE, gave the highest overall protein yield and best 2-DE resolution. Protein spot identification by nanoelectrospray quadrupole time of flight (QTOF)-tandem mass spectrometry (MS/MS) revealed known membrane and surface-associated proteins. This is the first report describing the successful solubilization and 2-D electrophoresis of membrane proteins from a Gram-positive bacterium.  相似文献   

7.
Protein extraction for two‐dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two‐dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one‐dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77–95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants.  相似文献   

8.
Zhan X  Desiderio DM 《Electrophoresis》2003,24(11):1818-1833
The long-term goal of this research program is to clarify the molecular mechanisms that participate in the formation of human pituitary macroadenomas. One approach to that goal is to characterize the differentially expressed proteins that are found by a comparison of the proteomes of control pituitary vs. macroadenoma tissues. In order to accurately perform a comparative proteomics study, based on the combination of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and PDQuest 2-D analysis software, a reproducible 2-DE separation system with a wide linear dynamic measure range is needed. A typical horizontal system is the Multiphor II system that analyzes one gel at a time, using a precast gradient gel (180 x 245 x 0.5 mm); a typical vertical system is the Dodeca system that analyzes up to 12 gels at a time on a single-concentration gel (190 x 205 x 1.0 mm). We have evaluated (Zhan and Desiderio, Electrophoresis 2003, 24, 1834-1846) the spatial and quantitative reproducibility of the two second-dimensional gel systems to separate a human pituitary proteome; that study showed a higher reproducibility for the Dodeca gel system. This present study investigated the relationship between the spot volume and the amount of protein loaded onto the gel for those two 2-D systems. The results demonstrated that the Dodeca gel system provides a wider linear dynamic range to measure the changes in the protein abundance in pituitary proteome.  相似文献   

9.
Hardy E  Ramón J  Saez V  Báez R  Tejeda Y  Ruiz A 《Electrophoresis》2008,29(11):2363-2371
The reverse staining, with imidazole-SDS-zinc, of PEG-linked proteins separated by SDS-PAGE was studied. Using model conjugates (interferon-alpha 2b (IFN-alpha2b) reacted with either a branched-chain (40,000) PEG (PEG2,40) or a linear monomethoxy PEG polymer (Mr of 12,000) and chromatographically purified monoPEG2,40-IFN-alpha2b), conventional small-format analytical gels (<1 mm thick) showed typical detection patterns (i.e., transparent, colorless bands clearly discernible against a zinc imidazolate-generated white gel background), in less than 20 min. Nonreacted (free) PEG was almost undetected, as expected. The reverse-stained PEGylated IFN-alpha2b patterns were qualitatively indistinguishable from those of parallel gels stained with iodine (I2). The LOD was estimated in the low nanogram range (e.g., at about 7 ng for mono- or bi-PEG2,40 IFN-alpha2b per lane on gradient (4-17%) gels). Also, this stain allowed the visualization of Coomassie blue-undetected PEG-IFN bands, and could be restained with I2. PEGylated species of lysozyme, a low-molecular-weight peptide, ovalbumin, and chymotrypsin were used to demonstrate the generality of this stain. We also show (i) how to counteract the adverse effect of some parameters (e.g., gel thickness above 1 mm, long gel length, low (e.g., 4-6%) acrylamide concentration) on the reverse staining process and (ii) that the properties of the reverse-stained PEGylated proteins remain unchanged, as judged by analyzing both the ion exchange chromatography-based positional isomer separation profile and enzyme-linked immunosorbent response of PEG-IFN recovered from gels. Consequently, this technique may be useful for the rapid analysis or the small-scale preparation of PEGylated proteins.  相似文献   

10.
The intraerythrocytic stage of Plasmodium falciparum alters the characteristics of its host cell by exporting selected plasmodial proteins. Although it is clear that the physicochemical and immunobiological properties of the host cell are modulated during parasite development, the involved plasmodial proteins and their mode of action are not completely known. Using cetyltrimethylammonium bromide (CTAB) or benzyldimethyl-n-hexadecylammonium chloride (16-BAC) for the first dimension and SDS for the second dimension, we separated proteins from membranes of human erythrocytes and of erythrocytes infected with the malaria parasite P. falciparum. Protein spots were analyzed by MALDI-TOF/TOF MS and annotated in respective 2D master gels. By using the alternative 2D approach, characteristic host cell membrane proteins and, more importantly, membrane-associated and exported plasmodial proteins were identified that might play a role in parasite-induced host cell modulation.  相似文献   

11.
Zhong H  Yun D  Zhang C  Yang P  Fan H  He F 《Electrophoresis》2008,29(11):2372-2380
In this study, ampholyte-free liquid-phase IEF (LIEF) was combined with narrow pH range 2-DE and SDS-PAGE RP-HPLC for comprehensive analysis of mouse liver proteome. Because LIEF prefractionation was able to reduce the complexity of the sample and enhance the loading capacity of IEF strips, the number of visible protein spots on subsequent 2-DE gels was significantly increased. A total of 6271 protein spots were detected after integrating five narrow pH range 2-DE gels following LIEF prefractionation into a single virtual 2-DE gel. Furthermore, the pH 3-5 LIEF fraction and the unfractionated sample were separated by pH 3-6 2-DE and identified by MALDI-TOF/TOF MS, respectively. In parallel, the pH 3-5 LIEF fraction was also analyzed by SDS-PAGE RP-HPLC MS/MS. LIEF-2-DE and LIEF-HPLC could obviously improve the separation efficiency and the confidence of protein identification, which identified a higher number of low-abundance proteins and proteins with extreme physicochemical characteristics or post-translational modifications compared to conventional 2-DE method. Furthermore, there were 207 proteins newly identified in mouse liver in comparison with previously reported large-scale datasets. It was observed that the combination of LIEF-2-DE and LIEF-HPLC was effective in promoting MS-based liver proteome profiling and could be applied on similar complex tissue samples.  相似文献   

12.
Becher B  Knöfel AK  Peters J 《Electrophoresis》2006,27(10):1867-1873
Silver staining of proteins after PAGE often remains the method of choice in many laboratories. Nevertheless, it is known that quantification of protein levels is keenly restricted to a small range of protein concentrations leading to an over- or underestimation of protein amounts. To overcome this, a time-based analysis method was developed to avoid the saturation effect of the silver-staining reaction, thus resulting in an improved dynamic range of the gel image produced and therefore better quantification of proteins. Instead of the well-known end-point image analysis, gray intensities of time series images of a developing gel are determined and times until a threshold gray value is reached are calculated. These times are used to calculate a new grayscale image which can be analyzed using commercial image processing software.  相似文献   

13.
Hu Y  Wang G  Chen GY  Fu X  Yao SQ 《Electrophoresis》2003,24(9):1458-1470
The defense mechanism by which cells combat metal stress remains poorly understood. By utilizing a newly developed technique - the differential gel electrophoresis (DIGE) - we evaluated the biological alterations of metal stress on Saccharomyces cerevisiae at its translational level. By simultaneously comparing the differential expression profiles of thousands of proteins as results of 15 different metal treatments, we were able to closely examine the response of a large number of proteins within the yeast proteome towards individual metals, as well as the response of the same proteins towards different metals. This, to our knowledge, is the first case which demonstrates the potential of DIGE as a high-throughput tool for large-scale proteome analysis. From our studies, where yeast cells were exhaustively treated with exogenous metals, 20-30% of all proteins detected showed statistically significant changes. According to different effects (up-/downregulation) of protein expression levels observed, we were able to tentatively divide the 15 metals into three groups. By mass spectrometric analysis, more than 50 protein spots were positively identified, both quantitatively and qualitatively. One of the proteins was identified to be Cu/Zn superoxide dismutase (SOD1), and its expression levels as a result of 15 different metal treatments was further examined in greater details. Significant changes in SOD1 expression were observed throughout all 15 DIGE gels.  相似文献   

14.
15.
We describe a blue native polyacrylamide gel electrophoretic technique that allows the facile detection, quantitation and purification of three NADPH-producing enzymes. Glucose 6-phosphate dehydrogenase, malic enzyme and NADP-dependent isocitrate dehydrogenase were detected simultaneously. Activity staining based on the formation of NADPH from the respective substrates and the subsequent precipitation of formazan enabled the relative quantitation of enzymatic activities, while Coomassie staining on one-dimensional or two-dimensional gels helped monitor the amount of protein associated with these enzymatic activities. This technique provides a simple and effective route to obtain homogeneous protein for further analyses and also enables the screening of these NADPH-producing enzymes in various cellular systems.  相似文献   

16.
17.
The proteins adsorbing onto the surface of intravenously injected drug carriers are regarded as a key factor determining the organ distribution. Depending on the particle surface properties, certain proteins will be preferentially adsorbed, leading to the adherence of the particle to cells with the appropriate receptor. Therefore, the knowledge of the protein adsorption pattern and the correlation to in vivo behavior opens the perspective for the development of intravenous colloidal carriers for drug targeting. After incubation in plasma, the adsorbed proteins were analyzed using two-dimensional polyacrylamide gel electrophoresesis (2-D PAGE, 2-DE). The purpose of the present study was to develop an alternative separation method to separate solid lipid nanoparticles (SLN) carriers from plasma by gel filtration prior to 2-D PAGE. Via the specific absorption coefficients and a two-equation system, elution fractions were identified being practically plasma-free. This allows protein analysis on SLN which are typically in density too close to the density value of water to be separated by the standard centrifugation method. The SLN used for establishing the gel filtration were prepared in a way that they had a sufficiently low density to be additionally separated by centrifugation. The adsorption patterns obtained after separation with both methods were qualitatively and quantitatively identical, showing the suitability of the gel filtration.  相似文献   

18.
The present study reports a comparison of recently described solubilizing methods, to set up a simple protocol for obtaining two-dimensional (2-D) gel electrophoresis maps of brain tissue. Different protocols were used for preparing rat brain homogenates and the resulting maps were compared by image analysis. Three different detergents, two delipidation methods, and introduction of a fractionation step based on different protein solubility in surfactants, were evaluated. When using efficient zwitterionic detergents (3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate, CHAPS; amidosulfobetaine 14, ASB-14), the patterns obtained by direct loading of total extracts were qualitatively overlapping with patterns obtained from fractionated samples. In contrast, a weaker nonionic agent (Nonidet P-40, NP-40) produced a different protein pattern in the collected fractions. Delipidation did not improve the results for all the different extraction methods. Immunoblots performed with antibodies recognizing cytosolic and membrane-spanning proteins, which were detected as nondegraded spots, showed that membrane proteins with intermediate molecular mass could be recovered. We suggest, as a simple and efficient method for preparing rat brain maps, the homogenization in a solution containing an efficient zwitterionic surfactant, which allows to solubilize cytosolic and membrane proteins in a single step. Alternatively, a fractionation can be carried out on samples homogenized by a weak solubilizing agent, a more labor-intensive effort resulting in a larger number of proteins on two maps.  相似文献   

19.
《Electrophoresis》2018,39(12):1488-1496
Intracellular binding of cisplatin to proteins has been associated with acquired resistance to chemotherapy. In our previous study we established an analytical method for the identification of intracellular cisplatin‐binding proteins. The method used a fluorescent carboxyfluorescein‐diacetate‐labeled cisplatin analogue (CFDA‐cisplatin), two‐dimensional gel electrophoresis (2DE) and mass spectrometry, which allows detecting and identifying intracellular CFDA‐cisplatin‐containing protein adducts in the acidic pH range (pH 4–7). Based on this analytical method we extended the identification of intracellular cisplatin‐protein adducts to the alkaline pH range (pH 6–10) giving chance to discover new important binding partners. 2DE analysis of alkaline proteins is challenging due to the difficult separation of basic proteins during the isoelectric focusing (IEF). The establishment of an optimized IEF protocol for basic proteins enabled us to identify several intracellular CFDA‐cisplatin‐binding proteins including enzymes of the glucose and serine metabolism like alpha enolase and D‐3‐phosphoglycerate 1‐dehydrogenase.  相似文献   

20.
Image analysis of two‐dimensional gels is a crucial step in a proteomic workflow and has a direct impact on obtained qualitative and quantitative data. Since the analysis is a complex process and creates large data amounts, the use of a respective software is inevitable. There are only a few papers published addressing the issue of analysis‐based variance; therefore, our aim was to highlight the discrepancy of received results when different commercially available image‐tools are used for gel analysis especially in terms of comparability of the obtained outcome when the same digital image set is used. A set of six gels (three replicates per group) of real‐life samples was created and examined with two different versions of PD‐Quest (Bio‐Rad) (version 6.1 and its update version 8.0) and with an external image‐tool Delta 2D (Decodon) (version 3.6). Replicate groups were analyzed and compared with each other with regard to volume ratios of a group of significantly changed spots. The study points out significant variations among results depending on the software package used, underlining the importance of a careful investigation of post‐experimental processes to receive comparable and reliable results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号