首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, rapid and a highly selective method for direct electrochemical determination of acebutolol hydrochloride (AC) was developed. The developed method was based on the construction of three types of sensors conventional polymer (I), carbon paste (II) and modified carbon nanotubes (MCNTs) carbon paste (III). The fabricated sensors depend mainly on the incorporation of acebutolol hydrochloride with phosphotungstic acid (PTA) forming ion exchange acebutolol‐phosphotungstate (AC‐PT). The performance characteristics of the proposed sensors were studied. The sensors exhibited Nernstian responses (55.6 ± 0.5, 57.14 ± 0.2 and 58.6 ± 0.4 mV mol L?1) at 25 °C over drug concentration ranges (1.0 × 10?6‐1.0 × 10?2, 1.0 × 10?7‐1.0 × 10?2 and 5.0 × 10?8‐1.0 × 10?2 mol L?1 with lower detection limits of (5.0 × 10?7, 5.0 × 10?8 and 2.5 × 10?8 mol L?1 for sensors (I), (II) and (III), respectively. The influence of common and possible interfering species, pharmaceutical additives and some related pharmacological action drugs was investigated using separate solution method and no interference was found. The stability indicating using forced degradation of acebutolol hydrochloride was studied. The standard addition method was used for determination of the investigated drug in its pharmaceutical dosage forms and biological fluids. The results were validated and statistically analysed and compared with those from previously reported methods.  相似文献   

2.
Since to the best of our knowledge, there is no potentiometric sensors based on carbon paste electrodes were proposed for the potentiometric determination of molybdenum(VI) ion. In this study, 2,2′-(propane-1,3-diylbis(oxy))dibenzoic acid (PBODBA) was synthesized and used as modifier in the fabrication of carbon paste electrode (CPE) for the quantification of molybdenum(VI). The developed electrodes I and II showed hexavalent Nernstian response of 9.80±0.05 and 9.90±0.08 mV decade−1 over the concentration ranges of 1.0×10−7–1.0×10−3 and 1.0×10−8–1.0×10−3 mol L−1, respectively. The electrodes showed good selectivity for Mo(VI). The modified electrodes were applied for the determination of Mo(VI) concentration in masscuaje agricultural fertilizer and spiked juice extractions containing several metals.  相似文献   

3.
A new solvent polymeric membrane (PME) and coated graphite (CGE) electrodes based on 3-amino-2-mercapto-3H-quinazolin-4-one as a suitable carrier for La(III) ion are described. The sensors exhibited a Nernstian response for La(III) ion over a wide concentration range (3.0 × 10?7 to 1.0 × 10?1 M for PME and 1.0 × 10?7 to 1.0 × 10?1 M for CGE) with a slope of 20.1 ± 0.3 (PME) and 23.4 ± 0.4 (CGE) mV decade?1. The lower detection limits by PME and CGE were 2.0 × 10?7 and 7.1 × 10?8 M, respectively. The potentiometric response of the proposed electrodes was independent of the pH of the test solution in the pH range 3.0–9.0 with a fast response time (<10 s). The applications of prepared sensors were demonstrated in the determination of lanthanum ions in spiked water sample and also utilized for indirect determination of fluoride content of two mouth wash preparation samples.  相似文献   

4.
Vitamin B1‐selective electrodes with PVC membrane were developed that contain ion associates of vitamin B1 with an inorganic anion, BiI4?, and an organic anion, brilliant yellow, as electrode‐active substances. The linearity ranges of the electrode function are 1.0×10?5–1.0×10?2 and 1.0×10?4–1.0×10?2 M, the electrode function slopes are 33.0±1.0 and 33.1±1.1 mV decade?1, the detection limits are 5.5×10?6 and 8.3×10?5 M for BiI4? and brilliant yellow respectively. The working range of pH is 5–12. The efficiency of the use of electrodes for the vitamin B1 content control in multivitamin pharmaceutical preparations was shown by direct potentiometry and potentiometric titration methods.  相似文献   

5.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

6.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

7.
An electroanalytical study of the oxidation processes of umbelliferone and hymecromone at a glassy carbon electrode in micellar solution and emulsified medium by different voltammetric techniques is described. The non-ionic surfactant Triton X-405 in acetate-buffered medium at pH 4.8 was found to be the most suitable. Different ranges of linearity were obtained in the micellar solutions, depending on the technique used; the limits of determination for differential pulse voltammetry (DPV) at a stationary electrode were 2.9×10?6 mol l?1 and 3.3×10?6 mol l?1 for umbelliferone and hymecromone, respectively. In the emulsified medium formed with a mixture of toluene and ethyl acetate (3:2), the oxidation processes yielded similar results. With DPV, linear calibration plots were obtained in the ranges 1.0×10?5–9.0×10?7 mol l?1 umbelliferone and 1.0×10?5–2.0×10?6 mol l?1 hymecromone. The media used are predominantly aqueous so that special reference electrodes and solvent purification are not needed.  相似文献   

8.
《Electroanalysis》2017,29(2):566-577
Two novel carbon paste electrodes based on gentamicin‐reineckate (GNS‐RN)/multiwall carbon nanotubes (MWCNTs)/sodium tetraphenyl borate (NaTPB) or potassium tetraphenylborate (KTPB) for potentiometric determination of gentamicin sulfate were constructed. Our endeavors of lowering the detection limit for gentamicin ion‐selective electrodes were described. The paper focused on gentamicin carbon paste electrodes based on GNS‐RN as electroactive material, o ‐nitrophenyloctyl ether (o ‐NPOE) as plasticizer and incorporation of MWCNTs and lipophilic anionic additives (NaTPB and KTPB) which lower the detection limit of the electrodes showing best results for determination of gentamicin ion. The characteristics of the electrodes, GNS‐RN+NaTPB+MWCNTs (sensor 1) and GNS‐RN+KTPB+ MWCNTs (sensor 2), were measured, showing favorable features as they provided measurements of the potential with near‐Nernstian slopes of 29.6±0.3 and 29.1±0.3 mV/decade over the concentration range of 1.0×10−6–1.0×10−2 mol L−1 and pH ranges 3.0–8.2 and 3.0–8.0 in short response times (6.5 sec). Importantly, the electrodes had low detection limits of 3.0×10−7and 3.4×10−7 mol L−1 for the two sensors, respectively. The sensors showed high selectivity for gentamicin ion with respect to a large number of interfering species. The electrodes were successfully applied for the potentiometric determination of GNS ions in pure state, pharmaceutical preparations and human urine with high accuracy and precision. The results of this study were compared with some previously published data using other analytical methods.  相似文献   

9.
The construction and performance characteristics of new sensitive and selective in situ carbon paste (ICPE) and screen-printed (ISPE) potentiometric sensors modified with ion-pairing agents such as phosphotungstic acid, sodium tetraphenylborate, phosphomolybdic acid and ammonium reineckate for determination of econazole nitrate (ECN) have been developed. The reaction mechanism between ECN and ion-pairing agents at the electrode surface was studied through scanning electron microscope and energy-dispersive X-ray analysis. The electrodes under investigation showed potentiometric response for ECN in the concentration range from 1.0 × 10?6 to 5.0 × 10?3 mol L?1 and from 1.0 × 10?6 to 1.0 × 10?2 mol L?1 for ISPE (electrode I) and ICPE (electrode II) potentiometric sensors, respectively, at 25 °C. The electrode response was pH independent in the range 2.5–7.5 and 2.5–6.5 for electrodes I and II, respectively. These sensors have Nernstian slope values of 59.4 ± 0.2 and 59.10 ± 0.2 mV decade?1 with detection limit of 1.0 × 10?6 mol L?1 for electrodes I and II, respectively. The electrodes showed fast response time of 4 and 9 s for electrodes I and II, respectively. The ISPE (electrode I) showed lifetime of 28 days, and this was considered as advantage over ICPE (electrode II). Selectivity for ECN with respect to a number of interfering materials was also investigated. The proposed electrodes were applied for determination of ECN in pure and pharmaceutical formulation using calibration, potentiometric titration and standard addition methods. The results showed good agreement with those obtained using official method. The t and F values indicated no significant difference between the suggested and reported methods. Method validation parameters were optimized according to ICH recommendations.  相似文献   

10.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

11.
《Analytical letters》2012,45(6):1183-1191
Abstract

A study of the enhancement effect on the fluorescence intensity of the Eu3+–-thenoyltrifluoroacetone (TTA)–-cetyltri–-methylammonium bromide (CTMAB) and the Dy3+ pyrocatechol–-3,5-disulphonic acid (Tiron) systems by Y3+has been carried out. In the presence of yttrium the fluorescence intensity of the systems was enhanced by a factor of about 100 and 15, respectively. The fluorescence intensity was a linear function of the concentration of europium or dysprosium in the range 1.0 × 10?10–-1.0 × 10?8mol dm?3 and 8.0 × 10?8–-9.0 × 10?6mol dm?3, respectively. The detection limit was 1.0 × 10?11mol dm?3 and 1.0 × 10?10mol dm?3, respectively. The standard addition method was used for the determination of europium or dysprosium in rare earth oxides and gave satisfactory results. The mechanism of enhanced fluorescence was proposed.  相似文献   

12.
The fabrication and electrochemical response characteristics of four novel potentiometric sensors for determination of pyrilamine maleate (PyraH) were described. The sensors include polymeric membrane electrodes (PME1, PME2) and carbon paste electrodes (CPE1, CPE2). The fabricated sensors were based on the ion-pair of pyrilamine with sodium tetraphenylborate (NaTPB) and ammonium reineckate (NH4RN) using dibutyl phthalate (DBP) as plasticizing solvent. The sensors showed linear, stable and near-Nernstian slopes of 56.4 ± 0.4, 54.2 ± 0.2, 58.8 ± 0.3 and 57.9 ± 0.4 mV decade?1 at 25 ± 0.1 °C and detection limits of 2.0 × 10?5, 1.8 × 10?5, 1.0 × 10?5 and 9.5 × 10?6 mol L?1 for PME1, PME2, CPE1 and CPE2 sensors, respectively. The response time was less than 10 and 8 s for polymeric membrane and carbon paste sensors. The proposed sensors displayed good selectivity for pyrilamine with respect to a number of common inorganic and organic species. The thermal temperature coefficients of the investigated sensors were 0.9508, 0.7012, 0.9450 and 0.6497 mV °C?1. Modified carbon paste sensors showed lower detection limits, higher thermal stability and faster response time than those of polymeric membrane sensors. The proposed sensors displayed useful analytical characteristics for determination of pyrilamine in pharmaceutical preparation and biological fluids (Human urine and plasma).  相似文献   

13.
The development and evaluation of a predictive-kinetic method for quantifying amino acids based on reactions with ninhydrin are described. Conditions are developed for which reactions are pseudo-first-order in the amino acid. Absorbance vs. time data from the kinetic region of the reaction (1–3 half-lives) are fitted to a first-order model to predict the total absorbance change that would occur if the reaction were monitored to completion. Computed absorbance changes vary linearly with amino acid concentration between 1 × 10?5 and 5 × 10?5 mol l?1. Results are virtually independent of changes in temperature (± 1° C) and ninhydrin concentration (± 3 × 10?3 mol l?1).  相似文献   

14.
This study reports on two types of glutamate sensors based on chitosan, i) heterogeneous membrane and ii) coated wire (CWE). The linearity ranges are: i) membrane, 1.0×10?5 to 1.0×10?1 M and ii) CWE, 1.0×10?5 to 1.0×10?3 M. The LODs, and pH ranges are i) membrane, 5.0×10?6 M and 4–8 and ii) CWE, 1.0×10?5 M and 3–5, respectively. The presence of ionic species normally found in foodstuffs did not interfere in both electrodes. Interference in CWE was minimized by prior dilution of the sample. The CWE was further investigated for on‐line analysis. The material for proposed electrodes was cheaper and environmental friendly. Hence, they were suggested as alternative tools for the analysis of glutamate.  相似文献   

15.
A novel flow injection chemiluminescence (FI‐CL) method for the determination of genistein was described. The method was based on the reaction between genistein and potassium ferricyanide in alkaline solution to give weak CL signal, which was dramatically enhanced by rhodamine 6G (Rh G). The CL emission allowed quantitation of genistein concentration in the range 1.0 × 10?7–4.0 × 10?5 mol/L with a detection limit (3σ) of 4.2 × 10?8 mol/L. The relative standard deviation for 11 parallel measurements of 5.0 × 10?7 mol/L, 4.0 × 10?6 mol/L and 1.0 × 10?5 mol/L genistein were 2.59%, 2.40% and 1.48%, respectively. The experimental conditions for the CL reaction were optimized and the possible reaction mechanism was discussed. The method was applied to the determination of genistein in biological fluids.  相似文献   

16.
Siderophores are compounds which transport iron across cell membranes; mycobactins are hydrophobic siderophores and were expected to be suitable for inclusion in the organic membrane phase of a liquid ion-exchange electrode responsive to iron(III) ions. In practice, no iron(III) response was obtained from mycobactin membranes (in a variety of solvents), but they did respond to salicylate ion with a sensitivity of 27–29 mV/decade over the range 2 × 10?3–3 × 10?2 mol l?1 at pH 7. The effects of pH and interference by other anions are described and the possible mechanisms of the electrode are discussed. The selectivity of the electrode for salicylate is better than that of quaternary ammonium liquid ion-exchange electrodes.  相似文献   

17.
Novel selective and sensitive poly (vinyl chloride) membrane sensors are developed for measuring alizarin red S (AR) based on the use of aliquate 336, MgIIphthalocyanine (MgPc), CuIIphthalocyanine (CuPc) and FeII phthalocyanine (FePc) plasticized poly (vinyl chloride) membrane. The sensors display Nernestian response with slopes of ‐50.6 ± 0.6 , ‐37.4 ± 0.5 , ‐37.7 ± 0.8 and ‐35.0 ± 0.7 mV decade?1 over the range of 5.2 × 10?6 to 1 × 10?2 mol L?1 for all of them and detection limits of 5.9 × 10?7, 1.9 × 10‐?6 2.3 × 10?6 and 1.9 × 10?6 mol L?1 for aliquate, MgPc, CuPc and FePc membrane based sensor, respectively. The sensors exhibit long life span, long term potential stability, high reproducibility, fast response and good discrimination ability towards alizarinate ion in comparison with many other anions. A tubular detector based on aliquate, MgPc, CuPc and FePc was further developed and coupled to a flow‐injection system for alizarin (AR) determination. Under optimized conditions, the linearity range is 1.0 × 10?5‐ 1.0 × 10?1 mol L?1, with a slope of ‐52.1 ± 0.8, 20.9 ± 0.7, 23.6 ± 0.4 and 25 ± 1.1 mV decade?1 and a reproducibility of ± 0.8 mV (n = 6) for aliquate, MgPc, CuPc and FePc membrane based sensors, respectively. The sensor based on aliquate is further utilized for a potentiodynamic quantification of aluminum in sludge samples and deodorants. The buffered solution of alizarin was allowed to react in a flow system with aluminum. The calibration curve of Al was found to be linear over a concentration range of 0.1 to 1.8 and 1.0 ‐ 40 μg mL?1 with a slope = 16.9 (r2 = 0.993) and 1.76 (r2 = 0.994) mV (μg/mL)?1 and a detection limit of 0.08 and 0.5 μg mL?1 for 10?4 and 10?3 mol L?1 AR? as a carrier, respectively. The method was successfully used for determining aluminum in sludge samples and deodorants. The data agree fairly well the nominal values and with results obtain by continuous flow hydride generation inductively coupled plasma (ICP) method.  相似文献   

18.
《Analytical letters》2012,45(8):1455-1464
Abstract

Some new PVC membrane electrodes based on Co(II), Mn(II), Ni(II), Cu(II), and Zn(II)chelates of bis-furfural-semi-o-tolidine as carriers are described. The electrodes exhibited different selectivity behaviour compared with the electrode using a classical anion exchanger such as tetraalkyl ammonium. The results showed that the Cobalt(II) chelate-based electrodes had a Nernstian response to iodide ion ranging from 1.0 × 10?1 to 1.0 × 10?6 mol.L?1 in a phosphate buffer solution of pH 2.0 with a detection limit of 6.4 × 10?7 mol.L?1 and a slope of 57.8 mV/dec at 25deg;C. The response mechanism was also investigated by use of both a.c. impedance and SPQC techniques. The Co(II) chelate-based electrodes were used to determine the iodide content of a drug with satisfactory results.  相似文献   

19.
《Electroanalysis》2005,17(9):776-782
Three recently synthesized Schiff's bases were studied to characterize their ability as Cr3+ ion carrier in PVC‐membrane electrodes. The polymeric membrane (PME) and coated glassy carbon (CGCE) electrodes based on 2‐hydroxybenzaldehyde‐O,O′‐(1,2‐dioxetane‐1,2‐diyl) oxime (L1) exhibited Nernstian responses for Cr3+ ion over wide concentration ranges (1.5×10?6–8.0×10?3 M for PME and 4.0×10?7–3.0×10?3 M for CGCE) and very low limits of detection (1.0×10?6 M for PME and 2.0×10?7 M for CGCE). The proposed potentiometric sensors manifest advantages of relatively fast response and, most importantly, good selectivities relative to a wide variety of other cations. The selectivity behavior of the proposed Cr3+ ion‐selective electrodes revealed a considerable improvement compared to the best previously PVC‐membrane electrodes for chromium(III) ion. The potentiometric responses of the electrodes are independent of pH of the test solution in the pH range 3.0–6.0. The electrodes were successfully applied to determine chromium(III) in water samples.  相似文献   

20.
《Analytical letters》2012,45(4):675-682
Abstract

Enantioselective, potentiometric membrane electrodes (EPMEs) based on antibiotics are proposed for the enantioanalysis of L‐vesamicol. A carbon paste was modified with antibiotics (vancomycin, teicoplanin, and teicoplanin modified with acetonitrile), as chiral selectors. The EPMEs based on antibiotics were reliably used for enantiopurity tests of L‐vesamicol using the direct potentiometric technique. The following linear concentration ranges: 1.0×10?6–1.0×10?4, 1.0×10?6–1×10?3 and 1×10?7?1×10?2 mol/L; and detection limits: 1.1×10?7, 9.6×10?8, and 3.6×10?8 mol/L were determine for vancomycin, teicoplanin, and teicoplanin modified with acetonitrile–based EPMEs, respectively. The proposed EPMEs were applied for the enantioanalysis of L‐vesamicol in urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号