首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

2.
In this work, the reduced graphene oxide functionalized with poly dimethyl diallyl ammonium chloride (PDDA) modified palladium nanoparticles (PDDA‐rGO/Pd) had been facile synthesized and used as the sensing layer for sensitive determination of capsaicin. The prepared composite was characterized by transmission electron microscopy, UV‐visible absorption spectroscopy. The image demonstrated that Pd nanoparticles were uniformly distributed on the graphene surface. The electrochemical properties of the prepared sensor were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the nanocomposite exhibits attractive electrocatalytic activity towards the oxidation of capsaicin. This attributed to the synergistic action of the excellent properties of Pd nanoparticles and graphene nanosheets. Under optimized conditions, the electrochemical sensor possessed a dynamic linear range from 0.32 μM to 64 μM with a detection limit of 0.10 μM (S/N=3) for capsaicin detection. Moreover, the cost‐effective and simple fabrication procedure, good reproducibility and stability as well as acceptable accuracy for capsaicin determination in actual samples are also the main advantages of this method, which might have broad application in other amide alkaloid detection.  相似文献   

3.
Graphene oxide (GO) was synthesized and reduced by chemical, hydrothermal and electrochemical methods. The GO and reduced GO was characterized by XRD, FTIR, absorption, Raman, FESEM and AFM methods. Chemically reduced GO (CrGO) was observed to efficiently enhance the electron transfer kinetics of varenicline compared to hydrothermally and electrochemically reduced GO. Hence, CrGO was used for the fabrication of an electrochemical sensor for the determination of varenicline in the concentration range of 0.03–50 µM with a limit of detection of 7.03 nM. The applicability of the proposed sensor was demonstrated by analyzing the biological samples containing varenicline.  相似文献   

4.
Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits  相似文献   

5.
《Electroanalysis》2017,29(2):602-608
Pt−Au nanoclusters decorated on the surface of reduced graphene oxide (rGO/Pt−Au) was facilely prepared by one‐pot electrochemical reduction. The morphology and composition of rGO/Pt−Au composites had been characterized by scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectrometry (EDX), fourier transform‐infrared spectroscopy (FT‐IR) and electrochemical methods. Ofloxacin is a member of synthetic quinolones which has been widely used for the treatment of common diseases in humans and animals. The performance of the rGO/Pt−Au nanocomposite toward the oxidation of ofloxacin was compared with the other similar nanostructures like rGO/Pt and rGO/Au. In the optimized conditions, two linear calibration curves were obtained, from 0.08 to 10 μM and 10 to 100 μM ofloxacin. A detection limit of 0.05 μM ofloxacin was observed at pH 5.7 for the GCE/rGO/Pt−Au. The proposed sensor was successfully applied to determine ofloxacin in tablets and human urine samples and the results were satisfactory.  相似文献   

6.
An electrochemical study of the fungicide bixafen using a paste electrode based on thermally reduced graphene oxide (TRGOPE) synthesized in air is presented for the first time. Cyclic voltammetry and square-wave voltammetry (SWV) were conducted to characterize the mechanism of the underlying electrode process of bixafen. Optimization of the procedure for the quantitative determination of bixafen was carried out by SWV. Excellent electroanalytical performance in terms of a limit of detection of 31.5 nmol L−1 was achieved. The TRGOPE was effectively employed to analyze bixafen in spiked river and tap water samples. The selectivity towards bixafen determination was also assessed.  相似文献   

7.
Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2SO4) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g−1 at a current density of 0.5 A g−1, with an associated high energy density of 93 Wh kg−1 at a power density of 500 W kg−1 in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge–discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.  相似文献   

8.
9.
《Electroanalysis》2018,30(9):2185-2194
The synthesis of novel nanocomposites with great sensing enhancement has played an important role in analytical chemistry, especially in the electrochemical detection of drug molecules. In this work, we report a wet chemical method for the preparation of a gold nanoparticle coated β‐cyclodextrin functionalized reduced graphene oxide nanocomposite. A number of different analytical techniques including ultraviolet‐visible spectroscopy, fourier transform infrared spectroscopy, scanning electron microscope and energy dispersive X‐ray spectroscopy were employed to characterize the as‐synthesized nanocomposite. With excellent electrocatalytic properties and high supramolecular recognition ability, the as‐synthesized nanocomposite was used to modify a glassy carbon electrode surface for the sensitive determination of ciprofloxacin using voltammetric technique. The current response of ciprofloxacin on the nanocomposite modified electrode was greatly enhanced compared to that on the bare and other modified electrodes. Using differential pulse voltammetry, the oxidation peak currents increased linearly with the ciprofloxacin concentrations in the range between 0.01 to 120 μM with a detection limit of 2.7 nM. The electrochemical testing results showed good stability and reproducibility. Therefore, the nanocomposite could be a potential candidate for the development of electrochemical sensors for sensitive and selective determination of ciprofloxacin or similar drugs in the future.  相似文献   

10.
11.
Yan Zhang  Jing Zheng  Mandong Guo 《中国化学》2016,34(12):1268-1276
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO‐Au composite membrane was obtained via direct one‐step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range between ?1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO‐Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross‐linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in detail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10?8–5.0×10?6 mol·L minus;1 with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10minus;8 mol·Lminus;1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90% –120% by using the standard addition method.  相似文献   

12.
In the present study, we report the simultaneous electrochemical determination of hydroquinone (HQ), catechol (CC) and resorcinol (RC) at gold nanoparticles (Au‐NPs) decorated reduced graphene oxide (RGO) modified electrode. An enhanced and well defined peak current response with a better peak separation of HQ, CC and RC is observed at RGO/Au‐NPs composite than that of RGO and Au‐NPs modified electrodes. The fabricated modified electrode shows a wide linear response in the concentration range of 3–90 µM, 3–300 µM and 15–150 µM for HQ, CC and RC, respectively. The detection limit of HQ, CC and RC is found as 0.15 µM, 0.12 µM and 0.78 µM, respectively.  相似文献   

13.
The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film and the electrical conductivity of the corresponding rGO films. We show that while GO-reduction efficiency increases with the GO size of lower oxidation in suspension, the trend is opposite for film. FESEM, XRD, and Raman analyses reveal that the GO reduction efficiency in film is affected not only by GO size and degree of oxidation but also by its interlayer spacing (restacking) and the efficiency is tunable based on the use of mixed GO. Moreover, we show that the electrical conductivity of rGO films depends linearly on the C/O and Raman ID/IG ratio of rGO and not the lateral size of GO. In this study, an optimal chemical reduction was achieved using premixed large and small GO (L/SGO) at a ratio of 3:1 (w/w). Consequently, the highest electrical conductivity of 85,283 S/m was achieved out of all rGO films reported so far. We hope that our findings may help to pave the way for a simple and scalable method to fabricate tunable, electrically conductive rGO films for electronic applications.  相似文献   

14.
《Electroanalysis》2017,29(5):1278-1285
The composite material of reduced graphene and Ru nanoparticles (rGO/RuNP) was obtained by electrochemical oxidation of ruthenium nanoparticles immobilised on the glassy carbon electrode (GCE) surface and used for simultaneous electroanalysis of drugs. There are many discussions in the scientific community about the decrease in therapeutic efficacy of contraceptives when associated with antibiotics. The antibiotic effect of the antagonist can increase the contraceptive excretion levels in urine, indicating a reduction in the body and thus a decrease in the desired effect. Using the DPV technique, it was possible to quantify ethinylestradiol (EE2) and amoxicillin (AMX) with a linear response range, 5.50x10−8 – 1.20x10−6 mol L−1, and LOD, 2.04 nmol L−1 and 1.63 nmol L−1, respectively. The results for the electrochemical behaviour of EE2 and AMX using GCE/rGO/RuNP were compared with GCE/rGO and GCE. The GCE/rGO/RuNP showed greater stability and separation anodic peak currents, suitable for the quantification of organic molecules in samples of environmental interest, as well as clinical and food samples.  相似文献   

15.
16.
Over the past years, the development of electrochemical sensing platforms for the sensitive detection of drug molecules have received great interests. In this research study, we introduced cauliflower‐like platinum particles decorated reduced graphene oxide modified glassy carbon electrode (Pt?RGO/GCE) as an electrochemical sensing platform for highly sensitive determination of acetaminophen (ACTM). The sensor was prepared via a simple and environmentally friendly two‐step electrodeposition method at room temperature. The combination of conductive RGO nanosheets and unique structured Pt particles (average 232 nm in diameter) provided an efficient interface with large effective surface area which greatly facilitated the electron transfer of ACTM. The experimental conditions that might affect the drug detection were studied in detail and optimized for best performance. The Pt?RGO/GCE was able to detect ACTM up to the limit of 2.2 nM with a linear concentration range from 0.01 to 350 μM. With its high reproducibility, excellent stability and selectivity, the as‐fabricated sensor was successfully applied to the ACTM content measurement in commercial tablets.  相似文献   

17.
This paper describes the development of a reduced graphene oxide (RGO), carbon nanotube (CNT) and Co(II) complex (cobalt(II) bis (benzoylacetone) ethylenediimino) (CBE) modified carbon paste electrode (CPE) for simultaneous determination of isoprenaline (IP), captopril (CAP) and tryptophan (Try). A pair of well‐defined redox peaks of Co(II) complex were obtained through a direct electron transfer between the Co(II) complex and the CPE. The proposed sensor showed very efficient electrocatalytic activity for anodic oxidation of IP in a 0.1 M phosphate buffer solution (pH 7.0). Square wave voltammetry (SWV) exhibited two linear dynamic ranges of 0.125–30.0 µM and 30.0–300.0 µM for IP. The detection limit for IP was found to be 50 nM. The proposed sensor was successfully applied for the determination of IP in real samples such as human blood serum, urine and IP ampoule.  相似文献   

18.
采用还原氧化石墨烯-金纳米颗粒(RGO-Au NPs)作为免疫传感器的固定基质,将C-反应蛋白(CRP)抗体固定在玻碳电极表面,用蒽醌二羧酸作为标记物,制成夹心型的CRP免疫传感器。在最优实验条件下,通过示差脉冲伏安法对CRP的含量进行检测。该传感器在0.25~100 ng/m L范围内具有良好的线性关系,检出限为0.08 ng/m L,线性系数为0.997。该传感器为C-反应蛋白的检测提供了一种新的手段。  相似文献   

19.
In this study, electrochemically reduced graphene oxide (ERGO) was used for the preparation of a screen‐printed modified electrode and applied for the voltammetric determination of fenamiphos (FNP) in tomato samples. Graphene oxide (GO) used for sensor construction was prepared according to an improved Hummers method and characterized by XRD, TEM, and FTIR, which confirmed the nanomaterial obtention. The ERGO formation was carried out from the electrodeposition by cyclic voltammetry, at 50 mV s?1 in the potential range of 0.0 to ?1.5 V, during 50 cycles. ERGO‐SPE was used in the evaluation of the voltammetric behavior of FNP. The ERGO‐SPE proposed presented excellent electrochemical performance towards FNP oxidation, promoting an enhance on the anodic peak current and a decrease of peak potential. Under optimized conditions, it was possible to construct an analytical curve, using square wave voltammetry, with a linear region of 0.25 to 25.0 μM, with calculated limits of detection and quantification of 0.067 and 0.22 μM. From this, it was possible to analyze FNP in fortified tomato samples at three concentration levels, which showed recoveries values varying between 82 and 102 %. The ERGO‐SPE device proved useful in determining FNP, where the effect of the electrodeposition of the GO promoted a significant increase in the employability of the printed electrode.  相似文献   

20.
Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor‐blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm?2 at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron–hole recombination rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号