首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-three diarylcarbenium ions and 38 pi-systems (arenes, alkenes, allyl silanes and stannanes, silyl enol ethers, silyl ketene acetals, and enamines) have been defined as basis sets for establishing general reactivity scales for electrophiles and nucleophiles. The rate constants of 209 combinations of these benzhydrylium ions and pi-nucleophiles, 85 of which are first presented in this article, have been subjected to a correlation analysis to determine the electrophilicity parameters E and the nucleophilicity parameters N and s as defined by the equation log k(20 degrees C) = s(N + E) (Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957). Though the reactivity scales thus obtained cover more than 16 orders of magnitude, the individual rate constants are reproduced with a standard deviation of a factor of 1.19 (Table 1). It is shown that the reactivity parameters thus derived from the reactions of diarylcarbenium ions with pi-nucleophiles (Figure 3) are also suitable for characterizing the nucleophilic reactivities of alkynes, metal-pi-complexes, and hydride donors (Table 2) and for characterizing the electrophilic reactivities of heterosubstituted and metal-coordinated carbenium ions (Table 3). The reactivity parameters in Figure 3 are, therefore, recommended for the characterization of any new electrophiles and nucleophiles in the reactivity range covered. The linear correlation between the electrophilicity parameters E of benzhydryl cations and the corresponding substituent constants sigma(+) provides Hammett sigma(+) constants for 10 substituents from -1.19 to -2.11, i.e., in a range with only very few previous entries.  相似文献   

2.
The kinetics of the reactions of benzhydryl cations with eight diazo compounds 1 a-g were investigated photometrically in dichloromethane. The nucleophilicity parameters N and slope parameters s of these diazo compounds were derived from the equation log k (20 degrees C)=s (E+N) and compared with the nucleophilicities of other pi systems (alkenes, arenes, silyl enol ethers, silyl ketene acetals). It is shown that the nucleophilic reactivities of diazo compounds cover more than ten orders of magnitude, being comparable to that of styrene on the low reactivity end and to that of enamines on the high reactivity end. The rate-determining step of these reactions is the electrophilic attack at the diazo-carbon atom to yield diazonium ions, which rapidly lose nitrogen.  相似文献   

3.
The kinetics of the reactions of the trans-β-nitrostyrenes 1a-f with the acceptor-substituted carbanions 2a-h have been determined in dimethyl sulfoxide solution at 20 °C. The resulting second-order rate constants were employed to determine the electrophile-specific reactivity parameters E of the trans-β-nitrostyrenes according to the correlation equation log k(2)(20 °C) = s(N)(N + E). The E parameters range from -12 to -15 on our empirical electrophilicity scale (www.cup.lmu.de/oc/mayr/DBintro.html). The second-order rate constants for the reactions of trans-β-nitrostyrenes with some enamines were measured and found to agree with those calculated from the electrophilicity parameters E determined in this work and the previously published N and s(N) parameters for enamines.  相似文献   

4.
4-Aminophenyl cations (expediently generated by photolysis of 4-chloroaniline and its N,N-dimethyl derivative by photolysis in MeCN) added to enamines and gave the corresponding alpha-(4-aminophenyl) ketones in satisfactory yields. The yields of the same ketones were increased when silyl enol ethers were used in the place of enamines. The alpha-arylation of silyl enol ethers of aldehydes occurred with lower yields and only with the N,N-dimethyl derivative. The procedure was successful with ketene silyl acetals giving in a single step a good yield of alpha-(4-aminophenyl)propionic(acetic) esters, known intermediates for the preparation of analgesic compounds. The reaction of the aryl cation with Danishefsky's diene gave the arylated beta-methoxy enone. The method is complementary to the recently developed palladium-catalyzed alpha-arylation and occurs under neutral conditions.  相似文献   

5.
The reaction of acylsilanes with α-sulfinyl carbanions such as α-lithioalkyl sulfoxide is described. The reaction proceeds to give silyl enol ethers preferentially through the initial formation of the α-silyl alkoxide intermediates. In particular, the products derived from enolizable acylsilanes were the regio-defined silyl enol ethers that cannot be obtained by usual enolization of the corresponding unsymmetrical ketones with base.  相似文献   

6.
Mild substitution reactions of acetals with carbon nucleophiles via the pyridinium‐type salts generated by the treatment of acetals with TESOTf‐2,4,6‐collidine or 2,2′‐bipyridyl have been developed. Various carbon nucleophiles, such as organocuprates, silyl enol ethers, enamines, etc., reacted with the pyridinium‐type salts to give the corresponding substituted products in good yields. The reactions proceeded under very mild conditions (non‐acidic conditions) and thus acid‐sensitive functional groups can be tolerated during the reaction. In addition, only an acetal can form the pyridinium‐type salt and react with nucleophiles in the presence of a ketal. This unusual selectivity is in contrast to general methods conducted under acidic conditions.  相似文献   

7.
The kinetics of the reactions of eleven substituted enamides with benzhydrylium ions (diarylcarbenium ions) were determined in acetonitrile solution. The second-order rate constants follow the correlation log k(2) (20 °C)=s(N)(E+N), which allowed us to derive reactivity parameters N and s(N). With 4.6相似文献   

8.
The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.  相似文献   

9.
Kinetics of the reactions of stabilized carbanions (derived from nitroethane, diethyl malonate, ethyl cyanoacetate, ethyl acetoacetate, acetyl acetone) with benzylidenemalononitriles have been determined in dimethyl sulfoxide solution at 20 degrees C. The second-order rate constants are employed to determine the electrophilicity parameters E of the benzylidenemalononitriles according to the correlation equation log k (20 degrees C) = s(E + N). Comparison with literature data shows that this equation allows the semiquantitative prediction of the reactivities of benzylidenemalononitriles toward a wide variety of nucleophiles, including carbanions, enamines, amines, water, and hydroxide.  相似文献   

10.
The kinetics of the reactions of nine carbanions 1a-i, each stabilized by two acyl, ester, or cyano groups, with benzhydrylium ions in water were investigated photometrically at 20 degrees C. Because the competing reactions of the benzhydrylium ions with water and hydroxide ions are generally slower, the second-order rate constants of the reactions of the benzhydrylium ions with the carbanions can be determined with high precision. The rate constants thus obtained can be described by the Ritchie equation, log(k/k(0)) = N(+) (eq 1), which allows us to calculate Ritchie N(+) parameters for a series of stabilized carbanions, for example, malonate, acetoacetate, malodinitrile, etc., and compare them with those of other n-nucleophiles in water (hydroxide, amines, azide, thiolates, etc.). Because the Ritchie relationship (eq 1) is a special case of the more general relationship log k = s(N + E) (eq 4), the reactivity parameters N and s for the carbanions 1a-i can also be calculated and compared with the nucleophilic reactivities of a large variety of n-, pi-, and sigma-nucleophiles, including reactivities of carbanions in dimethyl sulfoxide. While the acyl and ester substituted carbanions are approximately 3 orders of magnitude less reactive in water than in dimethyl sulfoxide, the malodinitrile anion (1i) shows almost the same reactivity in both solvents. Correlations between the nucleophilic reactivities of carbanions with the pK(a) values of the corresponding CH acids reveal that the malodinitrile anion (1i) is considerably more nucleophilic than was expected on the basis of its pK(a) value. This deviation is assigned to the exceptionally low Marcus intrinsic barriers of the reactions of the malodinitrile anion (1i).  相似文献   

11.
A new catalytic asymmetric tandem α‐alkenyl addition/proton shift reaction of silyl enol ethers with ketimines was serendipitously discovered in the presence of chiral N,N′‐dioxide/ZnII complexes. The proton shift preferentially proceeded instead of a silyl shift after α‐alkenyl addition of silyl enol ether to the ketimine. A wide range of β‐amino silyl enol ethers were synthesized in high yields with good to excellent ee values. Control experiments suggest that the Mukaiyama–Mannich reaction and tandem α‐alkenyl addition/proton shift reaction are competitive reactions in the current catalytic system. The obtained β‐amino silyl enol ethers were easily transformed into β‐fluoroamines containing two vicinal tetrasubstituted carbon centers.  相似文献   

12.
D Kang  S Park  T Ryu  PH Lee 《Organic letters》2012,14(15):3912-3915
The chemoselective formation of an enolate from alkyne in the presence of a carbonyl and imine group was realized, which constructed a variety of structural motifs under exceedingly mild reaction conditions in a tandem process. Reaction driving tandem hydrosilyloxylation/aldol reactions was achieved through the formation of enol silyl ethers catalytically generated in situ from readily available alkynes. These reactions were expanded to obtain β-amino enol silyl ethers in good yields via the tandem hydrosilyloxylation/isomerization/Mannich reaction.  相似文献   

13.
Silyl enol ethers bearing three pentafluorophenyl groups at the silicon atom are described. These compounds undergo uncatalyzed aldol reactions with aliphatic, α,β-unsaturated, and aromatic aldehydes. The observed reactivity is analyzed in terms of the Lewis acidity of the silyl fragment.  相似文献   

14.
Franklin A. Davis 《Tetrahedron》2018,74(26):3198-3214
N-Sulfonyloxaziridines are the most commonly used oxaziridines in organic synthesis. Most applications of these stable, commercially available reagents involve the stereo- and regioselective oxidation of nucleophiles which have found many applications in the synthesis of architecturally complex molecules. In addition, these oxaziridines have been used in cycloaddition reactions (oxyamination), epoxidation of alkenes, silyl enol ethers and enamines, as well as C-H oxidation and amination reactions. The object of this review is to highlight recent applications of N-sulfonyloxaziridines in organic synthesis.  相似文献   

15.
Easily accessible open chain and cyclic silyl enolethers show dienophilic reactivity in (4 + 2)-cycloaddition reactions with inverse electron demand equivalent to enol ethers. Preparative and kinetic results are reported.  相似文献   

16.
We report an Umpolung strategy of enol ethers to generate oxy‐allyl cation equivalents based on the use of hypervalent iodine reagents. Under mild basic conditions, the addition of nucleophiles to aryloxy‐substituted vinylbenziodoxolone (VBX) reagents, easily available in two steps from silyl alkynes, resulted in the stereoselective formation of substituted aryl enol ethers. The reaction was most efficient with phenols as nucleophiles, but preliminary results were also achieved for C‐ and N‐ nucleophiles. In absence of external nucleophiles, the 2‐iodobenzoate group of the reagent was transferred. The obtained aryl enol ethers could then be transformed into α‐difunctionalized ketones by oxidation. The described “allyl cation”‐like reactivity contrast with the well‐established “vinyl‐cation” behavior of alkenyl iodonium salts.  相似文献   

17.
Enol ethers (vinyl ethers) are intermediate in their reaction behavior between olefins and enamines. This article presents a survey of reactions leading to bond formation at the β? C atom of enol ethers; polymerizations and additions of acidic H? X compounds are not reviewed.  相似文献   

18.
Mukaiyama-aldol reactions of carbonyl compounds with silyl enol ethers were well catalyzed on siliceous mesoporous materials (MCM-41). The reactivity of acetals was much higher than that of aldehyde. The reactions proceeded selectively at 273-298 K on the catalyst of 30 mg per mmol of the substrate.  相似文献   

19.
A novel convenient method for the generation of thiocarbonyl ylides from readily accessible starting materials and the first synthetic application of in situ generated ylides in the synthesis of silyl enol and dienol ethers, accompanied by C-C bond formation, is described. Under completely neutral conditions without any catalyst or additive, thermal reactions of S-alpha-silylbenzyl thioesters in sealed tubes at 180 degrees C provided silyl enol and dienol ethers in good to excellent yields with high stereoselectivities. This procedure consists of a multistep reaction in a one-pot process, i.e., 1,4-silatropy of S-alpha-silylbenzyl thioesters to give thiocarbonyl ylides, 1,3-electrocyclization of the ylides to give thiiranes, and the extrusion of sulfur from thiiranes to give silyl enol and dienol ethers.  相似文献   

20.
[reaction: see text] In an effort to develop new ways of synthesizing polycyclic alkaloids, we successfully added silyl enol ethers, allylsilanes, and enamines to iminium ions generated from amides. Because of their higher oxidation state, such iminiums show a yet unexploited advantage of potential double cyclizations over standard Mannich monocyclizations. We report herein the first example of tethered nonaromatic carbon nucleophiles adding to activated amides for the generation of enaminals of various ring sizes, with endo- or exo-cyclic nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号