首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of 5-p-tolylethynyl-2'-deoxyuridine and 3',5'-di-O-acetyl-5-p-tolylethynyl-2'-deoxyuridine with Co2(CO)8 in THF gave 5-p-tolC2[CO2(CO)6]-2'-deoxyuridine and 3',5'-di-O-acetyl-5-p-tolC2[CO2(CO)6]-2'-deoxyuridine (92 and 66%).  相似文献   

2.
Irradiation of DNA and RNA pyrimidine nucleosides with UV light in frozen aqueous solution or in solution with acetone often results in the formation of cyclobutane dimers (CBDs). Many of these photodimers have not been characterized. We present here the results of work designed to achieve the isolation, spectroscopic characterization and determination of the stereochemical nature of a number of little studied or previously unstudied CBDs of four 2'-deoxyribonuclesides. These nucleosides are 2'-deoxyuridine (dUrd), 2'-deoxycytidine (dCyd), 5-methyl-2'-deoxycytidine (5-MedCyd) and 5-bromo-2'-deoxyuridine (5-BrdUrd). In particular, we have isolated and characterized six dUrd CBDs, five dCyd CBDs, five 5-MedCyd CBDs and four 5-BrdUrd CBDs. Photoproducts were studied by UV spectroscopy, mass spectrometry, proton NMR spectroscopy and via chemical approaches. Also presented are results from less definitive studies of a number of (6-4) (or 5-4) photoadducts of these nucleosides. In addition, results from exploratory photochemical studies of other 2'-deoxyribonucleosides in frozen solution, as well as some mixtures of two nucleosides, are given. The latter results indicate that 5-iodo-2'-deoxyuridine (5-IdUrd), 5-bromo-2'-deoxycytidine and 5-iodo-2'-deoxycytidine each form putative CBDs and that 5-BrdUrd is capable of forming putative mixed CBDs and (6-4) and/or (5-4) adducts with thymidine (Thd); 5-IdUrd similarly forms a (6-4) (or (5-4)) adduct with Thd.  相似文献   

3.
A modified oligodeoxynucleotide (ODN) containing N(3)-methyl-5-cyanovinyl-2'-deoxyuridine reacts by photoirradiation at 366 nm with an adenine residue of a complementary template ODN to yield an end-capped ODN in 87% yield.  相似文献   

4.
Nitriles have been shown to be effective vibrational probes of local environments in proteins but have yet to be fully utilized for the study of nucleic acids. The potential utility of 5-cyano-2'-deoxyuridine ( 1) as a probe of local nucleic acid environment was investigated by measuring the dependence of the IR nitrile stretching frequency (nu CN), line shape, and absorbance on solvent and temperature. The nu CN was found to be sensitive to solvent with an observed blue shift of 9.2 cm (-1) in going from THF to water. The dependence of the nitrile IR absorbance band was further investigated in water-THF mixtures. Global line shape analysis, difference FTIR spectroscopy, and singular value decomposition (SVD) were used to show the presence of three distinct local environments around the nitrile group of 1 in these mixtures. A modest blue shift in nu CN was observed upon a hydrogen-bond-mediated heterodimer formation between 2 (a silyl ether analogue of 1) and 2,6-diheptanamido-pyridine ( 3a) in chloroform. The intrinsic temperature dependence of the nu CN was found to be minimal and linear over the temperature range studied. The experimental studies were complemented by density functional theory (DFT) calculations on the dependence of the nitrile stretching frequency on solute-solvent interactions and upon heterodimer formation with model systems.  相似文献   

5.
(E)-5-(2-Bromovinyl)-2'-deoxyuridine is an antiviral drug that is experimentally used for modulation of the antitumour effect of fluoropyrimidines, such as ftorafur and 5-fluorouracil. The isolation of the analyte, in the presence of 5-fluorouracil, from the matrix is performed either by means of a simple protein precipitation (plasma) or by means of a liquid-liquid extraction with ethyl acetate (urine). Following pretreatment, the analyte is analysed by reversed-phase chromatography and quantified by absorbance detection at 307 nm. The minimum detectable concentration in plasma and urine samples is ca. 6 ng/ml. The recovery after deproteination of plasma samples is 75%, while after liquid-liquid extraction of urine the recovery amounts 92%. The degree of protein binding of the analyte, measured by ultrafiltration, is found to be 97%. These data allow the bioanalysis of (E)-5-(2-bromovinyl)-2'-deoxyuridine for pharmacokinetic studies.  相似文献   

6.
Zeng Y  Cao H  Wang Y 《Organic letters》2006,8(12):2527-2530
We report here the synthesis of 5-phenylthio-2'-deoxyuridine (d(PhS)U), its incorporation into oligodeoxynucleotides (ODNs), and its photocyclization chemistry. Irradiation of dinucleoside monophosphate d((PhS)UG) and d(PhS)U-bearing duplex ODNs with 254 nm light results in the facile formation of a cyclic product where the C6 of uracil is covalently bonded to the C2 of the phenyl ring. The chemistry reported here may serve as the basis for the efficient preparation of a new class of duplex DNA with an extended pi system. [reaction: see text]  相似文献   

7.
Poly(L-lactic acid) (L-PLA) microspheres containing 5-fluoro-2'-deoxyuridine (FUdR) or its ester prodrugs with saturated aliphatic acids (FUdR-Cn, n = 2, 3, 4, 5, 6, 8, 10 and 12) were prepared. The physicochemical and biological properties and antitumor activity of the L-PLA microspheres were studied. The lipophilicity of FUdR-Cn was increased by prolonging its acyl-promoieties. FUdR-C5, FUdR-C6, FUdR-C8, FUdR-C10 and FUdR-C12 showed almost complete incorporation into the microspheres, while incorporation of hydrophilic FUdR and FUdR-C2 was poor. The sustained release of FUdR from the microspheres containing FUdR-C4, FUdR-C5 and FUdR-C6 was obtained in the presence of esterase, and higher antitumor activity against P388 leukemia was observed in vivo. On the other hand, the release rates of FUdR from the microspheres containing FUdR-C10 and FUdR-C12 were very small, and their antitumor activity was much smaller than that of the free prodrug suspension. Effects of the susceptibility to enzymatic hydrolysis and the physiocochemical properties of prodrugs on the release profiles of FUdR from spheres were discussed.  相似文献   

8.
Thermolysis of a 2'-[(16)O]-O-benzoyl-[(17)O]-5'-O-(tert-butyldimethylsilyl)-O(2),3'-cyclouridine derivative gave the more stable 3'-[(17)O]-O-benzoyl-[(16)O]- 5'-O-(tert-butyldimethylsilyl)-O(2),2'-cyclouridine isomer, which was converted into 3'-[(17)O]-2'-azido-2'-deoxyuridine by deprotection and nucleophilic ring opening at C2' with lithium azide. The 5'-diphosphate was prepared by nucleophilic displacement of the 5'-O-tosyl group with tris(tetrabutylammonium) hydrogen pyrophosphate. Model reactions gave (16)O and (18)O isotopomers, and base-promoted hydrolysis of an O(2),2'-cyclonucleoside gave stereodefined access to 3'-[(18)O]-1-(beta-D-arabinofuranosyl)uracil. Inactivation of ribonucleoside diphosphate reductase with 2'-azido-2'-deoxynucleotides results in appearance of EPR signals for a nitrogen-centered radical derived from azide, and 3'-[(17)O]-2'-azido-2'-deoxyuridine 5'-diphosphate provides an isotopomer to perturb EPR spectra in a predictable manner.  相似文献   

9.
王春娟  谢芳  张万斌 《有机化学》2008,28(3):503-505
以2'-脱氧尿嘧啶为原料, 在糖苷羟基未保护情况下, 经过羟甲基化、选择性氧化、Knoevenagel缩合和Hunsdiecker反应等4步反应, 简便地合成了抗病毒药物E-5-(2-溴乙烯基)-2'-脱氧尿嘧啶, 为工业化生产提供了可靠的依据.  相似文献   

10.
To probe the correlation of unusual (C5Me5)(1-) reactivity with steric crowding in complexes such as (C5Me5)3UMe and (C5Me5)3UCl, slightly less crowded (C5Me5)2(C5Me4H)UX analogues (X = Me, Cl) were synthesized and their reactivity was evaluated. The utility of the cationic precursors [(C5Me5)2UMe](1+), 1, and [(C5Me5)2UCl](1+), 2, in the synthesis of (C5Me5)2(C5Me4H)UMe, 3, and (C5Me5)2(C5Me4H)UCl, 4, was also explored. Since the use of precursor [(C5Me5)2UMe][MeBPh3], 1a, is complicated by the equilibrium between 1a and (C5Me5)2UMe2/BPh3, the reactivity of [(C5Me5)2UMe(OTf)]2, 1b, (OTf = O3SCF3) prepared from (C5Me5)2UMe2 and AgOTf, was also studied. Both 1a and 1b react with KC5Me4H to form 3. Complex 4 readily forms by addition of KC5Me4H to [(C5Me5)2UCl][MeBPh3], generated in situ from (C5Me5)2UMeCl and BPh3. Complex 1b was preferred to 1a for the synthesis of (C5Me5)2(C5H5)UMe, 5, and (C5Me5)2UMe[CH(SiMe3)2], 6, from KC5H5 and LiCH(SiMe3)2, respectively. Complex 6 is the first example of a mixed alkyl uranium metallocene complex. Sterically induced reduction (SIR) reactivity was not observed with 3-6 although the methyl displacements from the (C5Me5)(1-) ring plane for 3 are the closest observed to date to those of SIR-active complexes. The (1)H NMR spectra of 3 and 4 are unusual in that all of the (C5Me4H)(1-) methyl groups are inequivalent. This structural rigidity is consistent with density-functional theory calculations.  相似文献   

11.
While, in general, decamethylzincocene, Zn(C5Me5)2, and other zincocenes, Zn(C5Me4R)2 (R = H, But, SiMe3), react with dialkyl and diaryl derivatives, ZnR'2, to give the half-sandwich compounds (eta5-C5Me4R)ZnR', under certain conditions the reactions of Zn(C5Me5)2 with ZnEt2 or ZnPh2 produce unexpectedly the dizincocene Zn2(eta5-C5Me5)2 (1) in low yields, most likely as a result of the coupling of two (eta5-C5Me5)Zn* radicals. An improved, large scale (ca. 2 g) synthesis of 1 has been achieved by reduction of equimolar mixtures of Zn(C5Me5)2 and ZnCl2 with KH in tetrahydrofuran. The analogous reduction of Zn(C5Me4R)2 (R = H, SiMe3, But) yields only decomposition products, but the isotopically labeled dimetallocene 68Zn2(eta5-C5Me5)2 and the related compound Zn2(eta5-C5Me4Et)2 (2) have been obtained by this procedure. Compound 2 has lower thermal stability than 1, but it has been unequivocally characterized by low-temperature X-ray diffraction studies. As for 1 a combination of structural characterization techniques has provided unambiguous evidence for its formulation as the Zn-Zn bonded dimer Zn2(eta5-C5Me4Et)2, with a short Zn-Zn bond of 2.295(3) A indicative of a strong Zn-Zn bonding interaction. The electronic structure and the bonding properties of 1 and those of related dizincocenes Zn2(eta5-Cp')2 have been studied by DFT methods (B3LYP level), with computed bond distances and angles for dizincocene 1 very similar to the experimental values. The Zn-Zn bond is strong (ca. 62 kcal.mol-1 for 1) and resides in the HOMO-4, that has a contribution of Zn orbitals close to 60%, consisting mostly of the Zn 4s orbitals (more than 96%).  相似文献   

12.
1 INTRODUCTION We once reported a CS bond cleavage reaction of (h5-C5Me5)Mo(StBu)3, which led to a Mo(IV) thio/thiolate complex (h5-C5Me5)MoS2(StBu)[1]. This reaction was facilitated by oxidants such as S8, gray selenium, and FeCl3[2]. The reaction with FeCl3 gave rise to a cubane cluster [(h5-C5Me5)2Mo2Fe2S4Cl2], which served as an excellent building block to construct various Mo/Fe/S clusters[2]. In this paper, we report the crystal structure of [(h5-C5Me5)2Mo2Fe…  相似文献   

13.
Treatment of 2β-tosyloxy-A-nor-5α-cholestane-5-ol ( 2 ) with t-butoxide in t-butanol gave 2α, 5-epoxy-A-nor-5α-cholestane ( 3 ) in quantitative yield. When A-nor-5β-cholestane-2α, 5-diol ( 4 ) was treated with tosyl chloride in pyridine 2β-chloro-A-nor-5β-cholestane-5-ol ( 7 ) and 2α-tosyloxy-A-nor-5β-cholestane-5-ol ( 8 ) were obtained. Whereas the chloride 7 was resistant to t-butoxide the tosylate 8 was transformed into an 1 : 1 mixture of 2α, 5-epoxy-5β-cholestane ( 10 ) and 2ξ-t-butoxy-A-nor-5β-cholestane-5-ol ( 11 ). In 2α-tosyloxy-A-nor-5α-cholestane-5-ol ( 12 ) substitution occurred as the only reaction. Both oxetanes 3 and 10 isomerize after heating above 50° and in polar or protic solvents to form A-nor-Δ3(5)-cholestene-2α-ol ( 6 ) and -2β-ol ( 14 ) respectively. Also, 2, 5-diols are encountered. 2α-Ethyl-2β, 2′-epoxy-A-nor-5α-cholestane ( 23 ) was synthesized starting from A-nor-5α-cholestane-2-one ( 17 ). The intermediates were the ester 16 , the diol 18 , the hydroxy-tosylate 19 and the chlorhydrin 20 . The spirocyclic oxetane 23 was reduced by LiAlH4 in dioxane (not in ether). By chromatography on silica gel 23 was isomerized to the homoallylic alcohol 21 and transformed into 2-methylene-A-nor-5α-cholestane ( 24 ) by fragmentation. The IR. and NMR. spectra of the new oxetanes were compared with those of a series of known oxetanes.  相似文献   

14.
A comparative synthetic, structural, and thermochemical study on a series of chelate complexes containing the fragment (eta 5-C5Me5)Ir [(eta 5-C5Me5)Ir(TsNCH2CH2NTs) (1), (eta 5-C5Me5)Ir(TsNCH2CO2) (2), (eta 5-C5Me5)Ir(CO2CO2) (3)] was performed to clarify the roles of carboxylato and sulfonamido ligands. Whereas 1 and 2 are monomeric in solution and in the solid state, 3 appears to exist as an oligomer or polymer, (3)n, which can be broken up by addition of a ligand L such as a phosphine, CO, or 2-methoxypyridine to form (eta 5-C5Me5)Ir(L)(CO2CO2) (6). The synthesis of (3)n from [(eta 5-C5Me5)IrCl(mu-Cl)]2 required the use of silver oxalate in CH3CN, but if other solvents were used, the bridging oxalato complex (eta 5-C5Me5)IrCl(mu-eta 2-eta 2-C2O4)ClIr(eta 5-C5Me5) (7) was obtained and identified by X-ray diffraction. Enthalpies for reaction of THF-soluble monomers 1 and 2 with PMe3 were determined to be -28.7(0.5) and -28.5(0.4) kcal mol-1, respectively. The oligomerization behavior of 3 may be a result of reduced sigma- or pi-donation of carboxylato ligands compared to N-tosylamido ligands, because the values for nu CO in oxalato and bissulfonamido complexes 6-CO and (eta 5-C5Me5)Ir(CO)(TsNCH2CH2NTs) (4-CO) were 2064 and 2042 cm-1, respectively.  相似文献   

15.
Hydrolytic reactions of the structural analogue of guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine), having one of the 2'-hydroxyl groups replaced with an amino function, have been followed by RP HPLC in the pH range 0-13 at 90 degrees C. The results are compared to those obtained earlier with guanylyl-(3',3')-uridine, guanylyl-(3',3')-(2',5'-di-O-methyluridine), and uridylyl-(3',5')-uridine. Under basic conditions (pH > 8), the hydroxide ion-catalyzed cleavage of the P-O3' bond (first-order in [OH(-)]) yields a mixture of 2'-amino-2'-deoxyuridine and guanosine 2',3'-cyclic phosphate which is hydrolyzed to guanosine 2'- and 3'-phosphates. Under these conditions, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is 10 times less reactive than guanylyl-(3',3')-uridine. Under acidic and neutral conditions (pH 3-8), where the pH-rate profile for the cleavage consists of two pH-independent regions (from pH 3 to pH 4 and from 6 to 8), guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is considerably reactive. For example, in the latter pH range, guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) is more than 2 orders of magnitude more labile than guanylyl-(3',3')-(2',5'-di-O-methyluridine), while in the former pH range the reactivity difference is 1 order of magnitude. Under very acidic conditions (pH < 3), the isomerization giving guanylyl-(2',3')-(2'-amino-2'-deoxyuridine) and depurination yielding guanine (both first-order in [H(+)]) compete with the cleavage. The Zn(2+)-promoted cleavage ([Zn(2+)] = 5 mmol L(-)(1)) is 15 times faster than the uncatalyzed reaction at pH 5.6. The mechanisms of the reactions of guanylyl-(3',3')-(2'-amino-2'-deoxyuridine) are discussed, particularly focusing on the possible stabilization of phosphorane intermediate and/or transition state via an intramolecular hydrogen bonding by the 2'-amino group.  相似文献   

16.
2-Alkyl-5-hydroxychromones (2-alkyl-5-hydroxy-4-oxo-4H-1-benzopyran) and 3-alkoyl-2-alkyl-5-hydroxychromones (3-alkoyl-2-alkyl-5-hydroxy-4-oxo-4H-1-benzopyran) were prepared in one-step and one pot reaction by condensation of 2',6'-dihydroxyacetophenone with an alkoyl chloride in the presence of K2CO3.  相似文献   

17.
5-Ethyl-2'-deoxyuridine (5EtdUrd) is a biologically active thymidine analogue. The cytotoxicity of 5EtdUrd was investigated with seven established human leukemia cell lines as well as with human peripheral blood PHA-stimulated lymphocytes. All types of leukemia cells were susceptible to the toxicity of 5EtdUrd as assayed with a [U-14C]-L-leucine incorporation system developed for this study. A 50% inhibition of leucine incorporation in 3-day cultures was induced by 1.3-3.8 microM 5EtdUrd with leukemic cells, but the concentration required to induce similar inhibition with PHA-stimulated lymphocytes was approximately was approximately 100-fold. The toxicity of 5EtdUrd seemed to require active DNA synthesis, since the inhibition of leucine incorporation became obvious only after the first 24 hours of culture. The DNA incorporation studies were based on a new isotopically labeled 5EtdUrd derivative, [2-14C]5EtdUrd, synthesized for this study in our laboratory. It was demonstrated for the first time that most of the radioactivity derived from [2-14C]5EtdUrd in DNA was in 5-ethyluracil. 5EtdUrd has a powerful antileukemic potency in vitro. Its effects against human leukemia in vivo remain to be tested.  相似文献   

18.
DNA duplexes containing an N,N,N',N'-tetramethyl-1,5-diaminonaphthalene analogue and 5-bromo-2'-deoxyuridine (BrdU) provide a readily accessible system for investigating excess electron transfer in DNA. Photoexcitation of the aromatic amine (lambda > 335 nm) induces reductive electron transfer as observed by strand cleavage adjacent to the BrdU residue. The weak exponential distance dependence (0.3 A-1) of electron transfer determined for this system of mixed dA-T and dG-dC base pairs suggests that thermally activated electron hopping is competitive with proton transfer within the dG.dC radical anion. The UV-dependent transfer of excess electrons and subsequent strand cleavage proceeds equivalently under anaerobic and aerobic conditions and is not sensitive to e-(aq) or hydroxyl radical trapping agents.  相似文献   

19.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

20.
(C5H4CH3)3Ho和(C5H4CH3)2Ho(C5H5)与5-苯基四唑(HN4CPh)在THF中反应,得到复合产物[(C5H4CH3)2HoN4CPh]2·[(C5H4CH3)(C5H5)HoN4CPh]2,该晶体属三斜晶系,P1空间群,晶胞参数为a=9.386(3),b=13.071(3),c=16.571(2)A,a=86.90(1),β=74.61(2),γ=77.30(2)°,V=1912.2(8)A3,Z=1,Dc=1.602g/cm3,Mr=922.61,μ=41.92cm-1,F(000)=896,最终偏离因子R=0.041,Rw=0.056.晶体数据显示,在同一个晶胞里有两个组成不同的分子,每一个分子都是具有对称中心的四唑基桥二聚体结构,其桥环单元-HoN3HoN3-是平面型的。每个钬原子分别被两个茂基和3个四唑基氮原子配位,形成1个边桥变形四面体构型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号