首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 'one pot' reaction between K[N(SiMe(3))(2)], InI and the beta-diimine ligand precursor [H(NDippCMe)(2)CH](Dipp = C(6)H(3)Pr(i)(2)-2,6) gave [In[(NDippCMe)(2)CH]], the first example of a two-coordinate, neutral, In(i) singlet 'carbene analogue'.  相似文献   

2.
A series of rare-earth-metal-hydrocarbyl complexes bearing N-type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH(2)SiMe(3))(3)(thf)(2)] with equimolar amount of the electron-donating aminophenyl-Cp ligand C(5)Me(4)H-C(6)H(4)-o-NMe(2) afforded the corresponding binuclear monoalkyl complex [({C(5)Me(4)-C(6)H(4)-o-NMe(μ-CH(2))}Y{CH(2)SiMe(3)})(2)] (1a) via alkyl abstraction and C-H activation of the NMe(2) group. The lutetium bis(allyl) complex [(C(5)Me(4)-C(6)H(4)-o-NMe(2))Lu(η(3)-C(3)H(5))(2)] (2b), which contained an electron-donating aminophenyl-Cp ligand, was isolated from the sequential metathesis reactions of LuCl(3) with (C(5)Me(4)-C(6)H(4)-o-NMe(2))Li (1 equiv) and C(3)H(5)MgCl (2 equiv). Following a similar procedure, the yttrium- and scandium-bis(allyl) complexes, [(C(5)Me(4)-C(5)H(4)N)Ln(η(3)-C(3)H(5))(2)] (Ln=Y (3a), Sc (3b)), which also contained electron-withdrawing pyridyl-Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl-Flu ligand (C(13)H(9)-C(5)H(4)N) by [Ln(CH(2)SiMe(3))(3)(thf)(2)] generated the rare-earth-metal-dialkyl complexes, [(η(3)-C(13)H(8)-C(5)H(4)N)Ln(CH(2)SiMe(3))(2)(thf)] (Ln=Y (4a), Sc (4b), Lu (4c)), in which an unusual asymmetric η(3)-allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium-trisalkyl complex [Y(CH(2)C(6)H(4)-o-NMe(2))(3)], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η(3)-C(13)H(8)-C(5)H(4)N)Y(CH(2)C(6)H(4)-o-NMe(2))(2)] (5). Complexes 1-5 were fully characterized by (1)H and (13)C NMR and X-ray spectroscopy, and by elemental analysis. In the presence of both [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3), the electron-donating aminophenyl-Cp-based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph(3)C][B(C(6)F(5))(4)] only, the electron-withdrawing pyridyl-Cp-based complexes 3, in particular scandium complex 3b, exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99%) polystyrene, whereas their bulky pyridyl-Flu analogues (4 and 5) in combination with [Ph(3)C][B(C(6)F(5))(4)] and AliBu(3) displayed much-lower activity to afford syndiotactic-enriched polystyrene.  相似文献   

3.
A new organically templated layered uranium phosphate fluoride, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has been synthesized by hydrothermal reaction of UO(3), H(3)PO(4), HF, and (CH(3))(2)NCH(2)CH(2)N(CH(3))(2) at 140 degrees C. [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][(UO(2))(2)F(2)(HPO(4))(2)] has a layered crystal structure consisting of seven-coordinated UO(5)F(2) pentagonal bipyramids and four-coordinated HPO(4) tetrahedra. Each anionic layer containing three-, four-, and six-membered rings is separated by [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations. The [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)](2+) cations may be readily exchanged with the M(2+) ions (M = Ba, Sr and Ca) in water to give high crystalline AE(UO(2))(2)(PO(4))(2).6H(2)O (AE = Ca, Sr, Ba).  相似文献   

4.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

5.
Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η(5)-C(5)H(5))(2)(THF)LuRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)Me(5))(2)(I)ThRu(η(5)-C(5)H(5))(CO)(2)], [(η(5)-C(5)H(5))(2)YRe(η(5)-C(5)H(5))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}URe(η(5)-C(5)H(5))(2)], [Y{Ga(NArCh)(2)}{C(PPh(2)NSiH(3))(2)}(CH(3)OCH(3))(2)], [{N(CH(2)CH(2)NSiMe(3))(3)}U{Ga(NArCH)(2)}(THF)], [(η(5)-C(5)H(5))(3)UGa(η(5)-C(5)Me(5))], [Yb(η(5)-C(5)H(5)){Si(SiMe(3))(3)(THF)(2)}], [(η(5)-C(5)H(5))(3)U(SnPh(3))], [(η(5)-C(5)H(5))(3)U(SiPh(3))], and (Ph[Me]N)(3)USi(SiMe(3))(3). Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide-metal (or metal-metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metal fragment to the other, while the bonding itself is always dominated by ionic character.  相似文献   

6.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

7.
The ZnMe complexes of bis-ferrocenyl-β-diketiminate ligands are prepared and the reactions with [Ph(3)C][B(C(6)F(5))(4)] are found to yield the salts [H(Ph(3)C)C(MeC(N(C(5)H(4))FeCp)(2)ZnMe] [B(C(6)F(5))(4)] and [CH(2)=C(MeC(N(C(5)H(4))FeCp)(2)ZnMe][B(C(6)F(5))(4)], derived from electrophilic substitution and hydride abstraction.  相似文献   

8.
Dinuclear [(NiL)Gd(hfac)(2)(EtOH)](H(3)L = 1,1,1-tris(N-salicylideneaminomethyl)ethane, Hhfac = hexafluoroacetylacetone), trinuclear [(NiL)(2)Gd(NO(3))], and tetranuclear [(NiL)Gd(CH(3)CO(2))(2)(MeOH)](2) complexes, were prepared by treating [Ni(HL)] with [Gd(hfac)(3)(H(2)O)(2)], Gd(NO(3))(3).6H(2)O, and Gd(CH(3)CO(2))(3).4H(2)O, respectively, in the presence of Et(3)N. All the complexes show that ferromagnetic interactions occur between the Ni(II) and Gd(III) ions.  相似文献   

9.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

10.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

11.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

12.
The structural and dynamical aspects of alkylammonium salts of a silicodecatungstate [(CH(3))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C1], [(n-C(3)H(7))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C3], [(n-C(4)H(9))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C4], and [(n-C(5)H(11))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C5] were investigated. The results of sorption isotherms, XRD analyses, and solid-state NMR spectroscopy show that facile sorption of solvent molecules, flexibility of structures, and high mobility of alkylammonium cations are crucial to the uniform distribution of reactant and oxidant molecules throughout the bulk solid, which are related to the high catalytic activities for epoxidation of alkenes.  相似文献   

13.
The preparation of a number of binuclear (salen)osmium phosphinidine and phosphiniminato complexes using various strategies are described. Treatment of [Os(VI)(N)(L(1))(sol)](X) (sol = H(2)O or MeOH) with PPh(3) affords an osmium(IV) phosphinidine complex [Os(IV){N(H)PPh(3)}(L(1))(OMe)](X) (X = PF(6)1a, ClO(4)1b). If the reaction is carried out in CH(2)Cl(2) in the presence of excess pyrazine the osmium(III) phosphinidine species [Os(III){N(H)PPh(3)}(L(1))(pz)](PF(6)) 2 can be generated. On the other hand, if the reaction is carried out in CH(2)Cl(2) in the presence of a small amount of H(2)O, a μ-oxo osmium(IV) phosphinidine complex is obtained, [(L(1)){PPh(3)N(H)}Os(IV)-O-Os(IV){N(H)PPh(3)}(L(1))](PF(6))(2)3. Furthermore, if the reaction of [Os(VI)(N)(L(1))(OH(2))]PF(6) with PPh(3) is done in the presence of 2, the μ-pyrazine species, [(L(1)){PPh(3)N(H)}Os(III)-pz-Os(III){N(H)PPh(3)}(L(1))](PF(6))(2)4 can be isolated. Novel binuclear osmium(IV) complexes can be prepared by the use of a diphosphine ligand to attack two Os(VI)≡N. Reaction of [Os(VI)(N)(L(1))(OH(2))](PF(6)) with PPh(2)-C≡C-PPh(2) or PPh(2)-(CH(2))(3)-PPh(2) in MeOH affords the binuclear complexes [(MeO)(L(1))Os(IV){N(H)PPh(2)-R-PPh(2)N(H)}Os(IV)(L(1))(OMe)](PF(6))(2) (R = C≡C 5, (CH(2))(3)6). Reaction of [Os(VI)(N)(L(2))Cl] with PPh(2)FcPPh(2) generates a novel trimetallic complex, [Cl(L(2))Os(IV){NPPh(2)-Fc-PPh(2)N}Os(IV)(L(2))Cl] 7. The structures of 1b, 2, 3, 4, 5 and 7 have been determined by X-ray crystallography.  相似文献   

14.
Four new uranium-ruthenium complexes, [(Tren(TMS))URu(η(5)-C(5)H(5))(CO)(2)] (9), [(Tren(DMSB))URu(η(5)-C(5)H(5))(CO)(2)] (10), [(Ts(Tolyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (11), and [(Ts(Xylyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (12) [Tren(TMS)=N(CH(2)CH(2)NSiMe(3))(3); Tren(DMSB)=N(CH(2)CH(2)NSiMe(2)tBu)(3)]; Ts(Tolyl)=HC(SiMe(2)NC(6)H(4)-4-Me)(3); Ts(Xylyl)=HC(SiMe(2)NC(6)H(3)-3,5-Me(2))(3)], were prepared by a salt-elimination strategy. Structural, spectroscopic, and computational analyses of 9-12 shows: i) the formation of unsupported uranium-ruthenium bonds with no isocarbonyl linkages in the solid state; ii) ruthenium-carbonyl backbonding in the [Ru(η(5)-C(5)H(5))(CO)(2)](-) ions that is tempered by polarization of charge within the ruthenium fragments towards uranium; iii) closed-shell uranium-ruthenium interactions that can be classified as predominantly ionic with little covalent character. Comparison of the calculated U-Ru bond interaction energies (BIEs) of 9-12 with the BIE of [(η(5)-C(5)H(5))(3)URu(η(5)-C(5)H(5))(CO)(2)], for which an experimentally determined U-Ru bond disruption enthalpy (BDE) has been reported, suggests BDEs of approximately 150 kJ mol(-1) for 9-12.  相似文献   

15.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

16.
Luminescent [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O), which forms from aqueous solutions of [(NH(3))(4)Pt]Cl(2) and K[Au(CN)(2)], crystallizes with extended chains of the two ions with multiple close Pt...Au (3.2804(4) and 3.2794(4) A) and Au...Au (3.2902(5), 3.3312(5), and 3.1902(4) A) contacts. Nonluminescent [(NH(3))(4)Pt][Ag(CN)(2)](2).1.4(H(2)O) is isostructural with [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O). Treatment of [(NH(3))(6)Ni]Cl(2) with K[Au(CN)(2)] forms [(NH(3))(2)Ni][Au(CN)(2)](2) in which the [Au(CN)(2)](-) ions function as nitrile ligands toward nickel, which assumes a six-coordinate structure with trans NH(3) ligands. The [Au(CN)(2)](-) ions self-associate into linear columns with close Au...Au contacts of 3.0830(5) A, and pairs of gold ions in these chains make additional but longer (3.4246(5) A) contacts with other gold ions.  相似文献   

17.
The N-imidoylamidine ligand i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2 2 was prepared. Direct reactions with AlI3 or AlMe3 afforded [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlI2][AlI4] 3 and [i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlMe2][AlMe4].AlMe3, 4 respectively. Thermolysis of 4 gave (i-Pr2C6H3NC(=CH2)(NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe2 6. Subsequent reaction with B(C6F5)3 gave the zwitterionic species [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe(mu-MeB(C6F5)3)] 7. In a related reactions of 2, [Ph3C][B(C6F5)4] and AlMe3, AlH3.NEtMe2 or AlD3.NMe3, the complexes [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlR2][B(C6F5)4] (R = Me 5, H 8, D 9) and [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlH][B(C6F5)4] 10 are formed. Single-crystal X-ray data for 2, 3, 5 and 10 are reported.  相似文献   

18.
New catalysts for the isospecific polymerization of 1-hexene based on cationic zirconium complexes incorporating the tetradentate fluorous dialkoxy-diamino ligands [OC(CF(3))(2)CH(2)N(Me)(CH(2))(2)N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(2)NO)(2-)] and [OC(CF(3))(2)CH(2)N(Me)(1R,2R-C(6)H(10))N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(Cy)NO)(2-)] have been developed. The chiral fluorous diamino-diol [(ON(Cy)NO)H(2), 2] was prepared by ring-opening of the fluorinated oxirane (CF(3))(2)COCH(2) with (R,R)-N,N'-dimethyl-1,2-cyclohexanediamine. Proligand 2 reacts cleanly with [Zr(CH(2)Ph)(4)] and [Ti(OiPr)(4)] precursors to give the corresponding dialkoxy complexes [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3) and [Ti(OiPr)(2)(ON(Cy)NO)] (4), respectively. An X-ray diffraction study revealed that 3 crystallizes as a 1:1 mixture of two diastereomers (Lambda-3 and Delta-3), both of which adopt a distorted octahedral structure with trans-O, cis-N, and cis-CH(2)Ph ligands. The two diastereomers Lambda-3 and Delta-3 adopt a C(2)-symmetric structure in toluene solution, as established by NMR spectroscopy. Cationic complexes [Zr(CH(2)Ph)(ON(2)NO)(THF)(n)](+) (n=0, anion=[B(C(6)F(5))(4)](-), 5; n=1, anion=[PhCH(2)B(C(6)F(5))(3)](-), 6) and [Zr(CH(2)Ph)(ON(Cy)NO)(THF)](+)[PhCH(2)B(C(6)F(5))(3)](-) (7) were generated from the neutral parent precursors [Zr(CH(2)Ph)(2)(ON(2)NO)] (H) and [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3), and their possible structures were determined on the basis of (1)H, (19)F, and (13)C NMR spectroscopy and DFT methods. The neutral zirconium complexes H and 3 (Lambda-3/Delta-3 mixture), when activated with B(C(6)F(5))(3) or [Ph(3)C](+)[B(C(6)F(5))(4)](-), catalyze the polymerization of 1-hexene with overall activities of up to 4500 kg PH mol Zr(-1) h(-1), to yield isotactic-enriched (up to 74 % mmmm) polymers with low-to-moderate molecular weights (M(w)=4800-47 200) and monodisperse molecular-weight distributions (M(w)/M(n)=1.17-1.79).  相似文献   

19.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   

20.
Five salts, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)).CH(2)Cl(2), [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O, have been crystallized and examined by single crystal X-ray diffraction. While the internal structure of the cation is similar in all salts, the interactions between cations vary in the different salts. Yellow [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH and red [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)) form face-to-face dimers with Pt...Pt separations of 3.6617(6) and 3.340(2) A, respectively. In the latter, hydrogen bonding of the chelating ligand to adjacent anions facilitates the close approach of pairs of cations. The salts [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O form columnar structures with Pt...Pt separations that range from 3.2514(5) to 3.5643(6) A. The water molecules and anions surround these columns and form bridges between neighboring columns. The electronic spectra of aqueous solutions of [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O show spectral changes upon increasing concentrations of the platinum complex that are indicative of the formation of a dimer in solution with an equilibrium constant for dimerization of 23(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号