首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple strategy for the one-step synthesis of polyaniline/AgCl nanocomposites at the water/magnetic ionic liquid interface was reported. By controlling the reactive conditions, highly dispersed polyaniline/AgCl nanocomposites with their size ranging around 50–80 nm were obtained with magnetic ionic liquid as the oxidant. Transmission electron microscopy was used to show the morphology of the nanocomposites. The nanocomposites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Moreover, polyaniline/AgCl nanocomposites on a glassy carbon electrode showed strong electrocatalytic activity for H2O2 and could be used to construct a H2O2 biosensor.  相似文献   

2.
A novel solution-enhanced dispersion by supercritical CO2 (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50?nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to ??-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC?CSF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC?CSF nanoparticles after ethanol treatment showed a significantly sustained release over 2?days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.  相似文献   

3.
4.
Hierarchical calcium molybdate (CaMoO4) nanostructured microspheres were synthesized via a facile room-temperature route assisted by an ionic liquid, 1-n-butyl-3-methylimidazolium chloride. The product was characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that micro-scaled CaMoO4 powders were assembled by nanoparticles with diameters ranging from 10 to 20 nm. The optical absorbance, photoluminescence emission (PL), and luminescence excitation (PLE) were investigated. The PL spectra excited at 273 nm have a strong green emission band maximum at 511 nm, which is attributed to the charge-transfer transitions within the MoO42− complex, and the luminescence intensity indicated a good luminescence quality of the CaMoO4 materials. By varying the amount of this assisted agent, we found that the ionic liquid played a crucial role as a surfactant in the formation of CaMoO4 materials with uniform hierarchical structure, which may be beneficial to the luminescence performance. This study presented a promising preparation strategy towards other luminescent materials.  相似文献   

5.
This paper deals with the charge transfer across the interface superconductor/ionic conductor — a relatively unknown field at present. Both n-type classical and p- and n-type high Tc superconductors are considered. Different types of solid and liquid electrolytes are used in experiments covering temperature ranges down to 10 and 88 K, respectively. Transient technique, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry represent the electrochemical methods in the study of Faradaic charge transfer processes occurring at that interface. First results with solid electrolytes show a current doubling around Tc. This effect is interpreted as a quantum-electrochemical kinetic effect caused by Cooper pairs as correlated charge carriers.  相似文献   

6.
We present a magnetic study of vanadium oxide nanotubes (VOx-NTs) with polyaniline (PAni). Transmission electron microscopy (TEM) shows the tubular shape and the multi-wall structure of the nanotubes. The static magnetic susceptibility measured at different magnetic fields shows a Curie behavior, while the magnetization versus magnetic field presents a non-linear dependence at low temperatures. Both experiments can be explained by the presence of paramagnetic ions with S = 1/2. Using Electron Paramagnetic Resonance technique, we identified as V4+(3d1) the paramagnetic ions present in the nanostructures. All the experimental results can be explained by a fraction between 14% and 18% of V4+ with respect to the total V atoms in the system.  相似文献   

7.
Miniemulsion polymerization was used as the synthetic method to produce clay/poly(methyl methacrylate) nanocomposites. Two kinds of interfacial interactions clay–polymer particle were observed by electron microscopy, one where the polymer particles are adhered on the surface of the larger fragments of clay, and another where nanometric fragments of clay are encapsulated by polymer particles. Variations in the glass transition temperature (Tg) and thermomechanical properties of the matrix, as function of clay content, were observed. In particular, at the highest clay loading (1.0 wt%) depression of Tg and thermomechanical properties were observed. The increased clay–polymer matrix interfacial area appears to be the conditioning factor that determines such behavior.  相似文献   

8.
Composite ZnO/Ag nanoparticles have been formed via the photocatalytic reduction of silver nitrate over the ZnO nanocrystals, their optical, electrophysical and photochemical properties have been investigated. Mie theory has been applied to analyze the structure of the absorption spectra of ZnO/Ag nanocomposite. The irradiation effects upon the optical properties of ZnO/Ag nanostructure have been investigated. It has been found that the irradiation of ZnO/Ag nanoparticles results in electrons accumulation by both the semiconductor and the metallic components of the nanocomposite. It has been found that silver nitrate can be photochemically deposited onto the surface of ZnO nanoparticles under the illumination with the visible light in the presence of the sensitizer – methylene blue. Kinetics of the sensitized Ag(I) photoredution has been studied. It has been concluded that the key stage of this process is the electron injection from singlet-excited methylene blue molecule into ZnO nanoparticle.  相似文献   

9.
Magnetic hydrophobic aerogels (MHA) in the form of nanocomposites of silica and maghemite (γ-Fe2O3) were prepared by one step sol–gel procedure followed by supercritical solvent extraction. Silica alcogels were obtained from TEOS, MTMS, methanol and H2O, and Fe(III) nitrate as magnetic precursor. The hydrophobic property was achieved using the methytrimethoxysilane (MTMS) as co-precursor for surface modification. The so produced nanocomposite aerogels are monolithic, hydrophobic and magnetic. The interconnected porous structure hosts ∼6 nm size γ-Fe2O3 particles, has a mean pore diameter of 5 nm, and a specific surface area (SSA) of 698 m²/g. Medium range structure of MHA is determined by SAXS, which displays the typical fractal power law behavior with primary particle radius of ∼1 nm. Magnetic properties of the nanoparticle ensembles hosted in them are studied by means of dc-magnetometry.  相似文献   

10.
Polyaniline(PANI)/Ag nanocomposites, synthesized by incorporation of separately prepared silver nanoparticles in 1-methyl-2-pyrrolidinone(NMP) solution of PANI, have been aged at the accelerated temperature of 120 oC to simulate a storage period of 2 years at 25 oC. The accelerated ageing of these materials is done by using the activation energy calculated from data collected using heat flow calorimetry (HFC). The impedance spectroscopic studies of NMP plasticized aged nanocomposite films suggest a microphase separation into reduced and oxidized repeat units. There is crosslinking of the PANI films during ageing thereby obstructing the charge transfer between PANI chains and silver nanoparticles. As a result, the resistivity is increased.  相似文献   

11.
We describe the exploitation of third-order nonlinear optical response — particularly nonlinear absorption and the nonlinear index of refraction — to probe interface dynamics, modifications and relaxation processes in granular materials consisting of metal quantum dots embedded in such dielectrics as fused silica and sapphire. Many features of these materials can be interpreted in terms of the quantum-mechanical model of the particle-in-a-box. Electronic and thermal relaxation processes in these novel nanocomposites are dominated by interactions of conduction-band electrons at the boundary between the quantum dot and its surrounding host material. Experimental examples presented include measurements of thermal and electronic relaxation rates, dephasing due to electron collisions at the nanocluster surface, effects of local structural order, changes in the saturation parameter due to chemical modification of the substrate, and one-and two-dimensional heat-transfer effects.Paper presented at the 129th WE-Heraeus-Seminar on Surface Studies by Nonlinear Laser Spectroscopies, Kassel, Germany, May 30 to June 1, 1994.  相似文献   

12.
Investigation of the electrical properties of polymer–clay nanocomposites is important in the development of nanoelectronic devices. These nanocomposites may be prepared by intercalating suitable monomers within interlayer spaces of expanding layered clay materials, followed by in situ polymerization. We made use of this approach to prepare montmorillonite–polyaniline nanocomposites by ion-exchanging the intergallery cations for anilinium ions and subsequently polymerizing the anilinium ions by peroxydisulphate in the acidic medium to yield emeraldine salt form of polyaniline intercalated in montmorillonite (ES1-MMT). The emeraldine salt form of polyaniline contains one positive charge per three monomer units, and hence, polymerization of anilinium ions reduces the number of cations present within the interlayer. Charge compensation thus requires uptake of required amount of cations from the solution. Further, the emeraldine salt form of polyaniline can be neutralized by treating with excess base such as ammonia. Thus, the neutralization of emeraldine salt results in an uptake of ammonium ions for charge balance. We have, therefore, neutralized ES1-MMT using aqueous ammonium hydroxide, and the cations inserted into the interlayer were again exchanged for anilinium ions. The latter was polymerized in acidic medium to yield more polyaniline in its emeraldine salt form (ES2-MMT). By repeating this procedure we have also prepared ES3-MMT. X-ray diffraction (XRD) spectra recorded at 150 °C reveal the enhancement of d-spacing upon increased amounts of polymer formation, and the Fourier transform infrared (FTIR) analysis also supports this by showing enhanced absorption due to bands typical of emeraldine salt (for example, B–NH+ = Q, where B and Q stand for benzanoid and quinoid, respectively). Careful analyses of FTIR spectra reveal that the polymer is present within the interlayers, as well as adsorbed onto the external surfaces and is bound to clay layers through hydrogen bonding. In this publication, we report the electrical properties of such ES-MMT nanocomposites. Alternating current (AC) impedance analysis shows that the nanocomposites are highly conducting materials, and their bulk conductivity enhances in the order ES1-MMT < ES2-MMT < ES3-MMT. The materials are pure electronic conductors as revealed by the direct current polarization studies. Further, their conductivities decrease with increasing temperature as of pure electronic conductors. By treating kaolinite with anilinium ions in acidic medium followed by peroxydisulphate ions, emeraldine salt–kaolinite (ES-KAL) composites have also been prepared. Because kaolinite is a non-expanding clay, the ion exchange is not possible, and hence, the polymer cannot be incorporated into the interlayer. This is indeed shown in the XRD analysis. The polymer can only reside out of the kaolinite particles. FTIR spectra reveal the hydrogen bonding between the polymer and kaolinite outer surfaces. AC impedance spectra of ES-KAL do not show high bulk conductivity. Thus, the comparison of AC impedance spectra of ES-KAL with ES-MMT systems clearly indicates that the bulk conductivity of the latter systems is predominantly due to intercalated polyaniline.  相似文献   

13.
A log-pile photonic crystal of CdS nanoparticles–polymer nanocomposites was successfully fabricated by a novel method combining the two-photon polymerization technique and in situ synthesis of CdS nanoparticles in a polymer matrix. The photonic band gap of the three-dimensional (3D) log-pile photonic crystal is confirmed and becomes more effective for CdS nanoparticles–polymer nanocomposites than polymer doped with Cd2+ ions, because the nanocomposites possess a higher refractive index than the polymer. The proposed concept in the new fabrication method for a 3D microstructure of polymer nanocomposites should be of critical importance in providing a general methodology for functionalization of materials via functional nanocomposites used in the field of laser microstructure fabrication. PACS 42.70.Qs; 78.66.Sq; 81.40.Tv; 82.35.Np; 82.50.Pt  相似文献   

14.
Uniform peachstone-like CuO 3D architectures consisting of single-crystal nanosheets have been successfully synthesized by using ionic liquid 1-octyl-3-methylimidazolium trifluoroacetate ([Omim]TA) as capping reagents under the ionic liquid-assisted hydrothermal condition. Detailed proofs indicated that the process of crystal growth was dominated by an oriented aggregation and self-assemble growth mechanism. The morphology of CuO evolved from nanoparticles to two-dimensional (2D) nanosheets and three-dimensional (3D) peachstone-like nanostructures. A formation process is proposed to illustrate the growth of peachstone-like CuO crystal. The influence of the ionic liquid cations on the morphology of CuO materials was studied in detail. The cations of the ionic liquids control the morphology of crystals. Additionally, it was also found that the concentration of ionic liquids and the reaction time have direct influences on the morphology of the products. Their optical absorption spectra were also studied. The synthetic strategy could be extended to assemble 3D architectures of other materials.  相似文献   

15.
The structural, electrical, magnetic, and thermal properties were investigated for the nanocomposites of polypyrrole (PPy) and inorganic clay (Na+-montmorillonite) prepared by emulsion polymerization. Dodecylbenzenesulfonic acid (DBSA) was used as emulsifier (surfactant) and dopant. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that the conducting PPy was intercalated into the clay layers in nanoscale (<10 Å). The dc conductivity (σdc) of PPy–DBSA with clay was 6 S/cm, while that of PPy–DBSA without clay was 20 S/cm at room temperature (RT). Temperature dependence of σdc of both samples followed the three dimensional variable range hopping (VRH) model. From the g-value and the temperature dependence of EPR linewidth, paramagnetic signals were strongly affected by the partially negatively charged clay layers. The thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) showed that the clay induced the thermal stability of the systems.  相似文献   

16.
Radiofrequency plasma polymerization in combination with direct current reactive magnetron sputtering is utilized for the synthesis of TiO2/plasma polymerized aniline nanocomposite thin films. In the composite film, X-ray diffraction measurements reveal formation of nanocrystalline rutile TiO2 of crystallite size 3.6 nm. Due to continuous bombardment of plasma species during simultaneous magnetron sputtering and plasma polymerization, the precursors of polymerization are broken and few functional groups are retained in the composite film. The plasma polymerized aniline has the direct optical band gap of 3.55 eV and the nanocrystalline rutile TiO2 is wide gap semiconductor with indirect gap of 3.20 eV which suggests the existence of an energy barrier at the interface in the composite form. The ac conductivity of composite film shows significant improvement as compared to plasma polymerized aniline film and sputtered rutile TiO2 film. The composite film may find potential application as antistatic coatings.  相似文献   

17.
A new inorganic-organic nanocomposite of polyacrylamide (PAM) and gamma-zirconium phosphate (gamma-ZrP) was prepared by intercalative polymerization. Intercalation of acrylamide (AM) monomer in gamma-ZrP was investigated by sonochemical and refluxing methods. High-intensity ultrasound does not induce the polymerization of AM but enhances greatly the intercalation rate. On the other hand, ultrasound also enhanced hydrolyzation of -CONH2 and shrinkage of PAM gel. The interlayer distance of AM-intercalated gamma-ZrP is 16.4 A. The polymerization and intercalation of AM occurred nearly at the same time by refluxing method. The same gamma-ZrP/PAM nanocomposites were obtained with (NH4)2S2O8 treatment.  相似文献   

18.
Polyaniline (PANI)/TiO2 composite is prepared by in situ polymerization of polyaniline on the surface of TiO2 template obtained by the sol-gel process via cotton template. The TiO2 microbelts are prepared by sol-gel method using the absorbent cotton as template for the first time. Then the TiO2 microtubules are used as template for the preparation of polyaniline/TiO2 composites. The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-wok Analyzer. A possible formation mechanism of TiO2 microtubules and polyaniline/TiO2 composites has been proposed. The effect of the mol ratio of polyaniline/TiO2 on the microwave loss properties and photocatalysis properties of the composites is investigated.  相似文献   

19.
One-dimensional polyaniline nanostructures were synthesized by interfacial polymerization in a solids-stabilized oil/water emulsion for the first time. The products were characterized with TEM, FTIR and UV-vis. FTIR analyses proved the polyaniline synthesized were of emeraldine salt form; the results of TEM showed that when MgCO3 and CaCO3 particles were used as emulsifiers, polyaniline nanofibers with an average diameter of 33 nm and nanotubes with an average outer diameter of 28 nm were obtained, respectively. Comparing to ordinary interfacial polymerization approach, our new route needed much less amount of oil phase and shorter polymerization time. A possible mechanism for the formation of one-dimensional polyaniline nanostructures was suggested.  相似文献   

20.
Ni/NiO nanocomposites were synthesized using solution combustion method and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and carbon, hydrogen, nitrogen (CHN) analyser. The Ni or NiO content in Ni/NiO nanocomposites vary with the quantity of HNO3 used for the synthesis. Magnetic coercivity (Hc) of Ni/NiO nanocomposites is found to be 413 Oe which can be used in magnetic applications. A feeble exchange bias of 7 Oe is seen from the NiO rich Ni/NiO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号