首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of heteroleptic bis(phthalocyaninato) lanthanide compounds [(Pc)M{Pc(OC8H17)8}] [H2Pc=unsubstituted phthalocyanine; H2Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] with monomeric complexes [(Pc)M(acac)] (Hacac=acetylacetone), both of which generated in situ, led to the isolation of heteroleptic phthalocyaninato-[2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] lanthainde(III) triple-decker complexes [(Pc)M{Pc(OC8H17)8}] (M=Gd-Lu) (1-8) as the sole product. Heterodinuclear analogues [(Pc)Lu{Pc(OC8H17)8}M(Pc)] (M=Gd-Yb) (9-15) were obtained in a similar manner from the reaction of [(Pc)M{Pc(OC8H17)8}] (M=Gd-Yb) and [(Pc)Lu(acac)]. The molecular structures of the herterodinuclear compound [(Pc)Lu{Pc(OC8H17)8}Er(Pc)] (13) and its homodinuclear counterparts [(Pc)M{Pc(OC8H17)8}M(Pc)] (M=Er, Lu) (5, 8) have been determined by X-ray diffraction analysis; these structures exhibit a symmetrical molecular structure with one inner planar Pc(OC8H17)8 ligand and two outer domed Pc ligands. In addition to various spectroscopic analyses, the electrochemistry of these compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, revealing the gradually enhanced pi-pi interactions among the phthalocyanine rings in the triple-deckers along with the lanthanide contraction.  相似文献   

2.
The infrared (IR) spectroscopic data for a series of 15 rare earth double-deckers M[Pc(MeOPhO)(8)](2) [M=Y, La, ..., Lu, except Pm; H(2)Pc=2, 3, 9, 10, 16, 17, 23, 24-octakis(4-methoxyphenoxy)phthalocyanine] with tervalent rare earths M(III)[Pc(MeOPhO)(8)](2) (M=Y, La, ..., Lu except Ce and Pm) and intermediate-valent cerium Ce[Pc(MeOPhO)(8)](2) have been collected with resolution of 2cm(-1). For M(III)[Pc(MeOPhO)(8)](2), typical IR marker band of the monoradical anion Pc(MeOPhO)(8)(-) shows characteristic absorption band whose frequency linearly varies in the range from 1,313 cm(-1) as a weak band for La[Pc(MeOPhO)(8)](2) to 1,324 cm(-1) as a medium band for Lu[Pc(MeOPhO)(8)](2) along with the decrease of rare earth ionic size. For Ce[Pc(MeOPhO)(8)](2), a weak band at 1,324 cm(-1) with contribution from pyrrole stretching was the marker IR band of phthalocyanine dianion Pc(2-). In conclusion, all the metal size-dependent IR absorptions should be contributed primarily from the vibrations of pyrrole, isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

3.
Wang R  Li Y  Li R  Cheng DY  Zhu P  Ng DK  Bao M  Cui X  Kobayashi N  Jiang J 《Inorganic chemistry》2005,44(6):2114-2120
A novel one-pot procedure starting from the corresponding M(acac)3 x nH2O, metal-free phthalocyanine H2Pc', and naphthalonitrile in the presence of DBU in n-octanol has been developed to prepare heteroleptic (naphthalocyaninato)(phthalocyaninato) rare earth double-decker complexes. A series of six sandwich compounds with different naphthalocyaninato ligands, phthalocyaninato ligands, and central rare earth metals, namely, Sm[Nc(tBu)4](Pc) [Nc(tBu)4 = 3(4),12(13),21(22),30(31)-tetra(tert-butyl)naphthalocyaninato; Pc = unsubstituted phthalocyaninato] (1), Sm(Nc)(Pc') [Pc' = Pc(OC5H11)4, Pc(OC8H17)8; Nc = 2,3-naphthalocyaninato; Pc(OC5H11)4 = 2(3),9(10),16(17),24(25)-tetrakis(3-pentyloxy)phthalocyaninato; Pc(OC8H17)8 = 2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyaninato] (2, 3), and M(Nc)[Pc(alpha-OC5H11)4] [M = Sm, Eu, Y; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] (4-6), have been isolated in good yields from this one-pot procedure demonstrating the generality of this synthetic pathway. In addition to spectroscopic analyses, the electrochemistry of these novel compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   

4.
Two novel sandwich-type mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs M(Pc)[D(NHC(8)H(17))(2)PP] [M = Eu, Lu; Pc = unsubstituted phthalocyaninate; D(NHC(8)H(17))(2)PP = 5,10-di(phenyl)-15,20-di(4-octylamino-phenyl)porphyrinate] (1, 2) have been designed, prepared, and characterized. The single crystal and molecular structure of the Eu analogue has been determined by X-ray diffraction analysis, revealing the head-to-tail supramolecular chains formed from closely bound double-decker molecules depending on the N-H-N hydrogen bonds between one octyl-substituted amidocyanogen group attached at the p-position of meso-attached phenyl group of the porphyrin ligand in the mixed ring double-decker molecule and one aza-nitrogen atom of the phthalocyanine ring in the neighboring double-decker molecule in a zigzag form. Their self-assembled nano-structures have been investigated by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM). Intermolecular H-N-H hydrogen bonding interaction leads to the formation of nano-structures with fusiform morphology with 220-250 nm average width and about 10 μm length for 1 and 300 nm width and 3-5 μm length for 2, respectively, revealing the effect of molecular size in the direction perpendicular to the tetrapyrrole ring on the dimensions of self-assembled nano-structures.  相似文献   

5.
A series of five carefully designed tris(phthalocyaninato) gadolinium triple-decker complexes [Pc(R)8]Gd[Pc(R')8]Gd[Pc(R')8] (R=R'=R'=H; R=R'=H, R'=OC8H17; R=R'=H, R'=OC8H17; R=H, R'=R'=OC8H17; R=R'=R'=OC8H17) (1-5) were prepared and the film forming properties on water surface were systematically investigated. The limited mean molecular area obtained by pi-A isotherms revealed an "edge-on" conformation for all these compounds. UV-vis absorption spectra showed red-shifted Q bands, indicating the formation of J aggregates and effective intermolecular interaction in solid film. Phthalocyanine rings were found to take tilted orientation with respect to the normal of substrate according to the polarized absorption spectroscopic measurements. Low angle X-ray diffraction results provide direct evidence and therefore clearly clarify the point, for the first time, that unsymmetrical triple-decker molecules pack on the water surface with the unsubstituted phthalocyanine ring set close to the water surface and the substituted phthalocyanine ligand with octyloxy groups lies on the top.  相似文献   

6.
Three heteroleptic tris(phathlocyaninato) dysprosium triple-decker complexes with different alkoxy groups at the peripheral positions of the medium phthalocyanine ligand (Pc)Dy[Pc(OCnH(2n+1))8]Dy(Pc) (n = 4, 8, 16) (I-III) {Pc = unsubstituted phthalocyaninate; Pc(OC4H9)8 = 2,3,9,10,16,17,23,24-octakis(butyloxy)phthalocyaninate; Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninate; Pc(OC16H33)8 = 2,3,9,10,16,17,23,24-octakis(hexadecyloxy)phthalocyaninate} have been synthesized, and their aggregate behaviors in monolayer and multilayer solid films have been comparatively studied. The pure compounds and their 1:4 mixtures with stearic acid (SA) have been found to form a stable monolayer at the air/water interface with a tilted edge-on orientation of (Pc)Dy[Pc(OCnH(2n+1))8]Dy(Pc) molecules. In the pure monolayers of the three triple-decker compounds, wirelike molecular aggregates were observed by high-resolution transmission electron microscopy (HRTEM). Adding SA has been found to prevent triple-decker compounds (Pc)Dy[Pc(OC4H9)8]Dy(Pc) (I) and (Pc)Dy[Pc(OC8H17)8]Dy(Pc) (II) from forming large aggregates, and small domains with a diameter of ca. 10 nm were observed in the mixed monolayers. HRTEM studies revealed that two crystalline phases with rectangular and hexagonal lattice structure are present in the small domains. However, both pi-A isotherms and HRTEM studies indicated that the mixed monolayer of compound (Pc)Dy[Pc(OC16H33)8]Dy(Pc) (III) with SA did not show a difference from the corresponding pure monolayer. The SA molecules were pressed into the cavity above the phthalocyanine ring formed by the eight long hexadecyloxy side chains of the medium macrocycle ligand in III. The multilayer LB films of all of these triple deckers fabricated by the vertical dipping method showed very good layered structure as revealed by the multiple-order diffraction peaks in low-angle X-ray diffraction (LAXRD) patterns.  相似文献   

7.
Li R  Ma P  Dong S  Zhang X  Chen Y  Li X  Jiang J 《Inorganic chemistry》2007,46(26):11397-11404
A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8}Eu[Pc(OCnH2n + 1)8] (n = 6, 8, 10,12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8} and metal-free 2,3,9,10,16,17,23,24-octakis(alkoxy)phthalocyanine H2Pc(OCnH2n + 1)8 (n = 6, 8, 10,12) in the presence of Eu(acac)3.H2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and have been electrochemically studied. With the help of the Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with an unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of the hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm2 V(-1) s(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.  相似文献   

8.
A series of four amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with different lengths of hydrophobic alkoxy substituents on one outer phthalocyanine ligand [Pc(15C5)4]Eu[Pc(15C5)4]Eu[Pc(OCnH(2n+1))8] (n = 4, 6, 10,12) (1, 2, 4, and 5) was designed and prepared. Their film forming and organic field effect transistor properties have been systematically studied in comparison with analogous [Pc(15C5)4]Eu[Pc(15C5)4]Eu[Pc(OC8H17)8] (3). Experimental results showed that all these typical amphiphilic sandwich triple-decker molecules have been fabricated into highly ordered films by the Langmuir-Blodgett (LB) technique, which displays carrier mobility in the direction parallel to the aromatic phthalocyanine rings in the range of 0.0032-0.60 cm2 V(-1) s(-1) depending on the length of the hydrophobic alkoxy substituents. This is rationalized on the basis of comparative morphology analysis results of the LB films by the atomic force microscopy technique.  相似文献   

9.
Homoleptic bis(phthalocyaninato) rare-earth double-deckers complexes [M(III)[Pc(alpha-OC5H11)4]2] (M = Eu, Y, Lu; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate) have been prepared by treating the metal-free phthalocyanine H2Pc(alpha-OC5H11)4 with the corresponding M(acac)3.nH2O (acac = acetylacetonate) in refluxing n-octanol. Due to the C4h symmetry of the Pc(alpha-OC5H11)4 ligand and the double-decker structure, all the reactions give a mixture of two stereoisomers with C4h and D4 symmetry. The former isomer, which is a major product, can be partially separated by recrystallization due to its higher crystallinity. The molecular structure of the major isomer of the Y analogue has been determined by single-crystal X-ray diffraction analysis. The metal center is eight-coordinate bound to the isoindole nitrogen atoms of the two phthalocyaninato ligands, forming a distorted square antiprism. Such an arrangement leads to an interesting pinwheel structure when viewed along the C4 axis, which assumes a very unusual S8 symmetry. The major isomers of all these double-deckers have also been characterized with a wide range of spectroscopic methods. A systematic investigation of their electronic absorption and electrochemical data reveals that the pi-pi interaction between the two Pc(alpha-OC5H11)4 rings is weaker than that for the corresponding unsubstituted or beta-substituted bis(phthalocyaninato) analogues.  相似文献   

10.
Density functional theory (DFT) and time-dependent DFT calculations were carried out to comparatively describe the molecular structures, molecular orbital energy gaps, atomic charges, infrared (IR) and Raman spectra, and UV-vis spectra of PbPc (1), PbPc(alpha-OC2H5)4 (2), and PbPc(alpha-OC5H11)4 (3) {Pc2- = dianion of phthalocyanine; [Pc(alpha-OC2H5)4]2- = dianion of 1,8,15,22-tetra-ethoxyphthalocyanine; [Pc(alpha-OC5H11)4]2- = dianion of 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine}. The calculated structural data of compounds 1 and 3 and the simulated IR and UV-vis spectra of 3 are compared with X-ray crystallography molecular structures and the experimental absorption spectra respectively to verify the performance of the B3LYP method and the LANL2DZ basis set. Substitution of bulky alkoxy groups at the nonperipheral positions of the phthalocyanine ring adds obvious effect to the molecular structure of phthalocyaninato lead compounds by deflecting the isoindole units in the direction that the isoindole units extends and distorting them in the C4 axis direction due to the steric hindrance. Both the calculated IR and UV-vis absorption spectra of 3 correspond well with the experimental results.  相似文献   

11.
The effects of alkyloxy substituents attached to one phthalocyanine ligand of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α‐OCH3)4] ( 1 ), Y(Pc)[Pc(α‐OCH3)8] ( 2 ), and Y(Pc)[Pc(β‐OCH3)8] ( 3 ), as well as their reduction products {Y(Pc)[Pc(α‐OCH3)4]}? ( 4 ), {Y(Pc)[Pc(α‐OCH3)8]}? ( 5 ), and {Y(Pc)[Pc(β‐OCH3)8]}? ( 6 ) [H2Pc(α‐OCH3)4=1,8,15,22‐tetrakis(methyloxy)phthalocyanine; H2Pc(α‐OCH3)8=1,4,8,11,15,18,22,25‐octakis(methyloxy)phthalocyanine; H2Pc(β‐OCH3)8=2,3,9,10,16,17,23,24‐octakis(methyloxy)phthalocyanine] are studied by DFT calculations. Good consistency is found between the calculated results and experimental data for the electronic absorption, IR, and Raman spectra of 1 and 3 . Introduction of electron‐donating methyloxy groups on one phthalocyanine ring of the heteroleptic double‐deckers induces structural deformation in both phthalocyanine ligands, electron transfer between the two phthalocyanine rings, changes in orbital energy and composition, shift of electronic absorption bands, and different vibrational modes of the unsubstituted and substituted phthalocyanine ligands in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)2. The calculations reveal that incorporation of methyloxy substituents at the nonperipheral positions has greater influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double‐deckers than at the peripheral positions, which increases with increasing number of substituents. Nevertheless, the substituent effect of alkyloxy substituents at one phthalocyanine ligand of the double‐decker on the unsubstituted phthalocyanine ring and on the whole molecule and the importance of the position and number of alkyloxy substituents are discussed. In addition, the effect of reducing 1 – 3 to 4 – 6 on the structure and spectroscopic properties of the bis(phthalocyaninato) yttrium compounds is also discussed. This systemic DFT study is not only useful for understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth metal complexes but also helpful in designing and preparing double‐deckers with tunable structure and properties.  相似文献   

12.
Three sandwich-type (phthalocyaninato)(porphyrinato) europium triple-decker complexes, namely Eu(2)(Pc)(2)(TClPP) (1), Eu(2)[Pc(β-OC(4)H(9))(8)](2)(TClPP) (2), and Eu(2)[Pc(β-OC(8)H(17))(8)](2)(TClPP) (3), have been designed, synthesized, and fabricated into nanotubes using nanoporous anodized aluminium oxide (AAO) membrane as the template. In particular, the effects of peripheral-substituents at the two phthalocyanine ligands in the triple-decker molecule on the molecular stacking relative to the alumina surface and the molecular packing mode in the nanotubes were clarified on the basis of the scanning electron microscopy (SEM), spectroscopic, and X-ray diffraction results. High-resolution TEM (HRTEM) images, in combination with the electronic absorption and XRD results, indicate that the discotic molecules of 1 without peripheral substituent on the phthalocyanine ligands form columnar structures on the alumina surface with homeotropic molecular stacking depending on the intermolecular π-π interactions in a head-to-tail manner. In good contrast, introduction of eight long octyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 3 induces an increase in the interaction of the triple-decker molecules with the alumina surface, resulting in the formation of nanotubes with discotic molecules of 3 parallel stacking relative to the alumina surface depending on the intermolecular π-π interactions in a face-to-face manner. Most interestingly, introduction of eight shorter length butyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 2 leads to the formation of nanotubes with discotic molecules of 2 parallel stacking relative to the alumina surface but depending on the intermolecular π-π interactions in a head-to-tail manner. X-Ray diffraction (XRD) data confirm the above-mentioned results.  相似文献   

13.
在回流的正戊醇中,以RE(acac)3·nH2O (acac=乙酰丙酮一价阴离子)为模板,以DBU(1,8-二氮杂双环[5.4.0]十一烯-7)作催化剂,在回流的正戊醇中与4,5-二(4-甲氧苯氧基)邻苯二甲氰反应,我们合成了一系列的15个新型稀土对称二层配合物M[Pc(MeOPhO)8]2[M=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu;H2Pc(MeOPhO)8=2,3,9,10,16,17,23,24-八(4-甲氧苯氧基)酞菁]。整个系列的对称二层配合物主要借助于UV-Vis,IR谱学手段得到充分的表征。所有的研究表明在两个大环之间存在强烈的π-π相互作用,空穴主要位于酞菁大环配体上。  相似文献   

14.
Treatment of MIII(Pc)(acac) (M = Sm, Eu, Gd; Pc = phthalocyaninate; acac = acetylacetonate), generated in situ, with 3-(3-pentyloxy)phthalonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol affords racemic mixtures of the chiral double-deckers MIII(Pc)[Pc(OC5H11)4] [Pc(OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate], which have been spectroscopically and structurally characterised.  相似文献   

15.
The half-sandwich rare-earth complexes [M(III)(acac)(TClPP)] (M = Sm, Eu, Y; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; acac = acetylacetonate), generated in situ from [M(acac)3] x n H2O and H2(TClPP), were treated with 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine [H2{Pc(alpha-OC5H11)4}] (Pc = phthalocyaninate) under reflux in n-octanol to yield both the neutral nonprotonated and protonated (phthalocyaninato)(porphyrinato) rare-earth double-decker complexes, [M(III){Pc(alpha-OC5H11)4}(TClPP)] (1-3) and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (4-6), respectively. In contrast, reaction of [Y(III)(acac)(TClPP)] with 1,4,8,11,15,18,22,25-octakis(1-butyloxy)phthalocyanine [H2Pc(alpha-OC4H9)8] gave only the protonated double-decker complex [Y(III)H{Pc(alpha-OC4H9)8}(TClPP)] (7). These observations clearly show the importance of the number and positions of substituents on the phthalocyanine ligand in controlling the nature of the (phthalocyaninato)(porphyrinato) rare-earth double-deckers obtained. In particular, alpha-alkoxylation of the phthalocyanine ligand is found to stabilize the protonated form, a fact supported by molecular-orbital calculations. A combination of mass spectrometry, NMR, UV-visible, near-IR, MCD, and IR spectroscopy, and X-ray diffraction analyses, facilitated the differentiation of the newly prepared neutral nonprotonated and protonated double-decker complexes. The crystal structure of the protonated form has been determined for the first time.  相似文献   

16.
The nature of the near‐IR band in the electronic absorption spectra of bis(tetrapyrrole) rare earth(III) complexes Y(Pc)2 (1), La(Pc)2 (2), Y(Pc)(Por) (3), Y(Pc)[Pc(α‐OCH3)4] (4), Y(Pc)[Pc(α‐OCH3)8] (5), and Y(Pc)[Pc(β‐OCH3)8] (6) was studied on the basis of time‐dependent density functional theory (TD‐DFT) calculations. The electronic dipole moment along the z‐axis in the electronic transition of the near‐IR band in all the studied neutral bis(tetrapyrrole) yttrium(III) and lanthanum(III) double‐deckers is well explained on the basis of the composition analysis of the orbitals involved. The electronic transition in the near‐IR band causes the reversion of the orbital orientation of one tetrapyrrole ring in both homoleptic and heteroleptic bis(tetrapyrrole) rare earth complexes and induces electron transfer from the tetrapyrrole ring with lower orbital energy to the other ring in the heteroleptic bis(tetrapyrrole) rare earth(III) complexes. The near‐IR band can work as an ideal characteristic absorption band to reflect the π–π interaction between the two tetrapyrrole rings in bis(tetrapyrrole) rare earth(III) double‐decker complexes because of its peculiar electronic transition nature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
The infra-red (IR) spectroscopic data for a series of 45 homoleptic unsubstituted and substituted bis(phthalocyaninato) rare earth complexes M(Pc)2 and M(Pc*)2 [M=Y, La...Lu except Pm; H2Pc=phthalocyanine; H2Pc*=2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyanine (H2OOPc) and 2(3),9(10),16(17),24(25)-tetra(tert-butyl)phthalocyanine (H2TBPc)] have been collected with resolution of 2 cm(-1). The IR spectra for M(Pc)2 and M(OOPc)2 are much simpler than those of M(TBPc)2, revealing the relatively higher symmetry of the former two compounds. For M(Pc)2 the Pc-* marker band at 1312-1323 cm(-1), attributed to the pyrrole stretching, and the isoindole stretching band at 1439-1454 cm(-1) are found to be dependent on the central rare earth size, shifting slightly to the higher energy along with the decrease of rare earth radius. The frequency of the vibration at 876-887 cm(-1) is also dependent on the rare earth ionic size. The metal size-sensitivity of this band and theoretical studies render it possible to re-assign it to the coupling of isoindole deformation and aza vibration. The nature of another metal-sensitive vibration mode at 1110-1116 cm(-1), which was previously assigned to the C-H bending, is now re-assigned as an isoindole breathing mode with some small contribution also from C-H in-plane bending. These assignments are supported by comparative studies of the IR spectra of substituted bis(phthalocyaninato) analogues M(OOPc)2 and M(TBPc)2. By comparison between the IR spectra of unsubstituted and substituted bis(phthalocyaninato) rare earth analogues and according to the IR characteristics of alkyl groups, some characteristic vibrational fundamentals due to the Pc rings and the substituents can be separately identified. In conclusion, all the metal size-dependent IR absorptions are composed primarily of the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

18.
Wang X  Zhang Y  Sun X  Bian Y  Ma C  Jiang J 《Inorganic chemistry》2007,46(17):7136-7141
A series of three novel 2,3,9,10,16,17,24,25-octakis(octyloxycarbonyl)phthalocyanine compounds M[Pc(COOC8H17)8] (M = 2H, Cu, Zn) (1-3) have been synthesized via the cyclic tetramerization of 4,5-di(octyloxycarbonyl)phthalonitrile, which was obtained by a newly developed procedure with o-xylene as starting material, promoted with organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the absence and presence of metal salt like M(acac)2.H2O (M = Cu, Zn) in n-octanol at 120 degrees C. In addition to elemental analysis, these novel octakis(octyloxycarbonyl)-substituted phthalocyanine compounds have been characterized by a series of spectroscopic methods. The electrochemistry of these compounds was also studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. A significant shift to the positive direction for both the first oxidation and the first reduction of compound 1, relative to H2Pc, reveals the electron-withdrawing nature of octyloxycarbonyl groups attached to the peripheral positions of phthalocyanine. The effect of peripheral octyloxycarbonyl substitution on the electrochemistry of the series of phthalocyanines 1-3 has been reasonably explained by theoretical calculation results using the density functional theory (DFT) method.  相似文献   

19.
From the two nitrogen-rich ligands BT(2-) (BT=5,5'-bitetrazole) and BTT(3-) (BTT=1,3-bis(1H-tetrazol-5-yl)triazene), a series of novel rare earth metal complexes were synthesised. For the BT ligand, a vast number of these complexes could be structurally characterised by single-crystal XRD, revealing structures ranging from discrete molecular aggregates to salt-like compounds. The isomorphous complexes [La2(BT)3]14 H2O (1) and [Ce2(BT)3]14 H2O (2) reveal discrete molecules in which one BT(2-) acts as a bridging ligand and two BT groups as chelating ligands. The complexes, [M(BT)(H2O)7]2[BT] x (x) H2O (3-5), (M=Nd (3), Sm (4), and Eu (5)), are also isomorphous and consist of [M(BT)(H2O)7]+ ions in which only one BT(2-) acts as a chelate ligand for each metal centre. [Tb(H2O)8]2[BT]3 x H2O (6) and [Er(H2O)8](2)[BT](3)x H2O (7) are salt-like compounds that do not exhibit any significant metal-nitrogen contacts. In the BTT-samarium compound 9, discrete molecules were found in which BTT(3-) acts as a tridentate ligand with three Sm--N bonds.  相似文献   

20.
The molecular geometries, electronic structures, and excitation energies of tin and lead phthalocyanine compounds, SnPc, PbPc, Sn(Pc)(2), and Pb(Pc)(2), were investigated using the B3LYP method within a framework of density functional theory (DFT). The geometries of SnPc, PbPc, Sn(Pc)(2), and Pb(Pc)(2) were optimized under C(4v), C(4v), D(4d), and D(4d) molecular symmetries, respectively. The excitation energies of these molecules were computed by the time-dependent DFT (TD-DFT) method. The calculated results for the excited states of three compounds other than the unknown Pb(Pc)(2) corresponded well with the experimental results of electronic absorption spectroscopy. The non-planar C(4v) molecular structure of SnPc and PbPc influences especially on the orbital energy of the HOMO-1 through mixing of the s-type atomic orbital of the central metal atom to the π system of the Pc ring in an anti-bonding way; however, the HOMO and the LUMO have little effect of the deviation from the planar structure because they have no contribution from the atomic orbital of the central metal. This orbital mixing pushes up the orbital energy of the HOMO-1, and reduces the energy of the metal-to-ligand charge transfer band of SnPc and PbPc. The calculated results also reproduced well the excitation profile of Sn(Pc)(2), which was quite different from that of SnPc. The strong interactions between the π-type orbitals of two Pc moieties altered the electronic structure resulting in the characteristic excitation profile of Sn(Pc)(2). In addition, this caused a reduction of about 0.8 eV in the ionization potential as compared to usual MPcs including SnPc, which was consistent with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号