共查询到20条相似文献,搜索用时 57 毫秒
1.
The mixed metal oxalate precursors, calcium(II)bis(oxalato)cobaltate(II)hydrate (COC), strontium(II)bis(oxalato)cobaltate(II)pentahydrate (SOC) and barium(II)bis(oxalato)cobaltate(II)octahydrate (BOC) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR spectral and X-ray powder diffraction studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound COC decomposed mainly to CaC2O4 and Co3O4 at 340 °C, and a mixture of CaCO3 and Co3O4 identified at 510 °C. A mixture of CaCO3 and Ca3Co2O6 along with the oxides and carbides of both the cobalt and calcium were attributed at 1000 °C as end products. DSC study in nitrogen ascertained the formation of a mixture of CaO and CoO along with a trace of carbon at 550 °C. The mixture species, SrC2O4, CoC2O4 and Co3O4 were generated at 255 °C in case of SOC in air, which ultimately changed to CoSrO3, SrCO3 and oxides of strontium and cobalt at 1000 °C. The several mixture species also generated as intermediate at 332 and 532 °C. The DSC study in nitrogen indicated the formation of CoSrOx (0.5 < x < 1) as end product. In case of BOC in air, a mixture of BaCoO2, BaO, CoO and carbides are identified as end product at 1000 °C through the generation of several intermediate species at 350 and 530 °C. A mixture of BaO and CoO is identified as end product in DSC study in nitrogen. The kinetic parameters have been evaluated for all the dehydration and decomposition steps of all the three compounds using four non-mechanistic equations. Using seven mechanistic equations, the kind of dominance of kinetic control mechanism of the dehydration and decomposition steps are also inferred. The kinetic parameters, ΔH and ΔS of all the steps are explored from the DSC studies. Some of the decomposition products are identified by IR and X-ray powder diffraction studies. 相似文献
2.
Associative ionization has been observed in the ractions of Ba, Sr, Ca (M) with OH, M + OH = MOH+ + e?, and relative rates have been measured under effusive thermal cross molecular beam conditions. The rates are in the ratio 3 × 103, 3 × 101 to 1 for Ba, Sr, relative to Ca. 相似文献
3.
The results are presented of a study of the pyrolytic behavior of methanol, ethanol, n-propanol, and isopropanol. Samples were pyrolysed in an atmosphere of helium over a temperature range of 300–1200 °C, and the volatile products were determined by gas chromatographic techniques. Mechanisms have been derived for the thermal degradation of the alcohols as an aid in the determination of their atomic constitution and their molecular structure. 相似文献
4.
B. Sairam Patra 《Thermochimica Acta》2006,441(1):84-88
Thermal decomposition of anhydrous strontium titanyl oxalate proceeds through a series of complex reactions to form strontium metatitanate at high temperature. Among them the decomposition of oxalate is the first major thermal event. A kinetic study of oxalate decomposition in the temperature range 553-593 K has been carried out by cooled gas pressure measurement in vacuum. Results fitted the Zhuravlev equation for almost the entire α-range (0.05-0.92) indicating the occurrence of a diffusion-controlled, three-dimensional rate process. The activation energy has been calculated to be 164 ± 10 kJ mol−1. Results from elemental analysis, TGA, IR and SEM studies of undecomposed and partially decomposed samples have been used to supplement kinetic observations in formulating the mechanism for oxalate decomposition. 相似文献
5.
The kinetics of the thermal decompositions of CaCO3, SrCO3 and BaCO3 into their oxides were studied by thermogravimetry at constant and linearly increasing temperatures. The kinetics of the isothermal decompositions of calcium and strontium carbonates were described by the lawR
n
=1–(1–)1/n
, wheren=1.8 and 1.2, respectively. The kinetics of the non-isothermal decompositions of the two carbonates, analysed by the Ozawa and Coats-Redfern methods, were in keeping with the isothermal kinetics. True kinetic compensation laws were established for each decomposition of the two carbonates, including the data under both isothermal and non-isothermal conditions.As concerns the decompositions of BaCO3, however, there was some difference between the kinetic features relating the isothermal and non-isothermal conditions. A true kinetic compensation law was not established in this case.
Zusammenfassung Die Kinetik der thermischen Zersetzung von CaCO3, SrCO3 und BaCO3 zu den Oxiden wurden durch Thermogravimetrie bei konstanter und linear ansteigender Temperatur untersucht. Die Kinetik der isothermen Zersetzung von Calcium- und Strontium-carbonat folgt dem GesetzR n =1–(1 –)1/n, won=1,8 bzw. 1,2. Die Kinetik der nichtisothermen nach den Methoden von Ozawa und Coats-Redfern analysierten Zersetzung der zwei Carbonate ist in Übereinstimmung mit der isothermen Zersetzung. Wahre kinetische Kompensationsgesetze wurden für die Zersetzung der beiden Carbonate erhalten, einschließlich der sich sowohl auf isotherme als auch auf nichtisotherme Bedingungen beziehenden Daten. Was die Zersetzung von Bariumcarbonat betrifft, so wurden einige Unterschiede im kinetischen Verhalten bei der Zersetzung unter isothermen und nichtisothermen Bedingungen festgestellt. Ein wahres kinetisches Kompensationsgesetz konnte in diesem Falle nicht ermittelt werden.
, . R n =1–(1–)1/n , , , 1,8 1,2. , -, . « » , . , , . - «» .相似文献
6.
7.
Metathesis reactions between either SrI(2) or BaI(2) and 2 equiv of the potassium phosphanide [[(Me(3)Si)(2)CH]-(C(6)H(4)-2-OMe)P]K yield, after recrystallization, the complexes [[([Me(3)Si](2)CH)(C(6)H(4)-2-OMe)P](2)M(THF)(n)] [M = Sr, n = 2 (5); Ba, n = 3 (6)]. Similar metathesis reactions between MI(2) and 2 equiv of the more sterically demanding potassium phosphanide [[(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P]K yield the chemically isostructural complexes [[([Me(3)Si](2)CH)(C(6)H(3)-2-OMe-3-Me)P](2)M(THF)(2)] [M = Ca (9), Sr (7), Ba (8)]. Compounds 5-9 have been characterized by multi-element NMR spectroscopy and X-ray crystallography. Complex 9 is thermally unstable and decomposes at room temperature to give the tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P(Me) and an unidentified Ca-containing product. Compounds 5 and 6 also decompose at elevated temperatures to give the corresponding tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(4)-2-OMe)P(Me) and intractable metal-containing products. The decomposition of 5, 6, and 9 suggests that these compounds undergo an intramolecular methyl migration from the O atom in one phosphanide ligand to the P atom of an adjacent phosphanide ligand to give species containing dianionic alkoxo-phosphanide ligands. 相似文献
8.
A number of new quaternary iridium based hydrides and deuterides AAeIrH/D(6) (where A = Na and K; Ae = Ca, Ba, Sr, and Eu) have been synthesized by direct combination of the alkali, alkaline earth or europium binary hydrides/deuterides and iridium powder. The crystal structures were determined by Guinier-H?gg X-ray and neutron powder diffraction and a new cubic structure type was found. The structure is described in space group F43m, but related to the K(2)PtCl(6) type structure. The new structure can be described as consisting of cubes of A(+) and Ae(2+) ions, where the A(+) and Ae(2+) ions alternates so that they occupy opposite corners in the cube. Every second cube contains a regular octahedral [Ir(III)H(6)](-3)-complex and the adjacent is empty. Solid-state IR spectroscopy was used to determine the Ir-allowed stretching and bending frequencies for the [Ir(III)H(6)](-3) complex with different counterions. These were also compared with the corresponding stretching frequencies for Fe(II)H(6), Ru(II)H(6), Os(II)H(6), and Ir(II)H(5) complexes in similar solid state hydrides, which increased when going from Fe through Ru, Os to Ir. The frequencies scaled almost linearly with the inverse of size of the cube surrounding the complexes but showed no significant dependence of the formal oxidation state or the experimentally obtained Ir-D distances. However, this was mainly because of difficulties in obtaining enough accurate atomic positions. The ab initio DFT calculations could reproduce the stretching frequencies within a few 10 cm(-1), indicating that experimental vibrational frequencies offer a sensitive test of DFT results. 相似文献
9.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option. 相似文献
10.
《Journal of solid state chemistry》1986,62(2):133-137
Four ternary phases MPtSi (M = Ca, Eu, Sr, Ba) have been shown to crystallize in the LaIrSi-type structure (space group P213). This ternary structure is a derivative structure of the binary SrSi2-type structure (space group P4332 or P4132). In the MPtSi series the LaIrSi-type structure has a stability range for metals with radii from rCa = 1.973 Å to rBa = 2.243 Å in contrast to MSi2 compounds which exist with the SrSi2-type structure only from rSr = 2.151Å to rBa 2.243 Å. From a single-crystal investigation on CaPtSi remarkably short PtSi distances of 2.30 Å (3x) are obtained. Structural relations are discussed. 相似文献
11.
Integral reactive cross sections for chemi-ionization have been measured in a crossed-beam experiment for Ba, Sr + SF6 → BaF+, SrF+ + SF5? and Ca, Sr + NF3 → CaF+, SrF+ + NF2? at collision energies Ec.m. < 4 eV. The experimental results confirm a collision complex. The applicability of RRKM theory to chemi-ionization of polyatomic molecules is discussed. The presence of competing neutral-product reactions, included in the calculation, is important for the determination of dynamical and statistical properties of the intermediate states formed. The slope of the chemi-ionization cross section as a function of collision energy indicates directly that all vibrational degrees of freedom are activated. 相似文献
12.
Stowe AC Shaw WJ Linehan JC Schmid B Autrey T 《Physical chemistry chemical physics : PCCP》2007,9(15):1831-1836
The mechanism of hydrogen release from solid state ammonia borane (AB) has been investigated via in situ solid state (11)B and (11)B{(1)H} MAS-NMR techniques in external fields of 7.1 T and 18.8 T at a decomposition temperature of 88 degrees C, well below the reported melting point. The decomposition of AB is well described by an induction, nucleation and growth mechanistic pathway. During the induction period, little hydrogen is released from AB; however, a new species identified as a mobile phase of AB is observed in the (11)B NMR spectra. Subsequent to induction, at reaction times when hydrogen is initially being released, three additional species are observed: the diammoniate of diborane (DADB), [(NH(3))(2)BH(2)](+)[BH(4)](-), and two BH(2)N(2) species believed to be the linear (NH(3)BH(2)NH(2)BH(3)) and cyclic dimer (NH(2)BH(2))(2) of aminoborane. At longer reaction times the sharper features are replaced by broad, structureless peaks of a complex polymeric aminoborane (PAB) containing both BH(2)N(2) and BHN(3) species. The following mechanistic model for the induction, nucleation and growth for AB decomposition leading to formation of hydrogen is proposed: (i) an induction period that yields a mobile phase of AB caused by disruption of the dihydrogen bonds; (ii) nucleation that yields reactive DADB from the mobile AB; and (iii) growth that includes a bimolecular reaction between DADB and AB to release the stored hydrogen. 相似文献
13.
14.
An investigation about the thermal degradation of acetylsalicylic acid (ASA) is performed. It is verified that the thermal degradation of ASA produces not only salicylic acid (SA) and acetic acid (AA) as products but also an ASA polymer, which is transparent and solid. And also verified that the temperature in which the polymer is obtained influences its physical consistence (solid or semi-solid). Furthermore, the ASA polymer is very stable from a thermic point of view, as verified by TG and DSC analysis. X-ray diffraction patterns obtained for the ASA polymer show that it exhibits a low crystallinity. 相似文献
15.
The combustion chemistry of morpholine (C(4)H(8)ONH) has been experimentally investigated recently as a representative model compound for O- and N-containing structural entities in biomass. Detailed profiles of species indicate the self-breakdown reactions prevailing over oxidative decomposition reactions. In this study, we derive thermodynamic and kinetic properties pertinent to all plausible reactions involved in the self-decomposition of morpholine and its derived morphyl radicals as a crucial task in the development of comprehensive combustion mechanism. Potential energy surfaces have been mapped out for the decomposition of morpholine and the three morphyl radicals. RRKM-based calculations predict the self-decomposition of morpholine to be dominated by 1,3-intramolecular hydrogen shift into the NH group at all temperatures and pressures. Self-decomposition of morpholine is shown to provide pathways for the formation of the experimentally detected products such as ethenol and ethenamine. Energetic requirements of all self-decomposition of morphyl radicals are predicted to be of modest values (i.e., 20-40 kcal/mol) which in turn support the occurrence of breaking-down reactions into two-heavy-atom species and the generation of doubly unsaturated four-heavy-atom segments. Calculated thermochemical parameters (in terms of standard enthalpies of formation, standard entropies, and heat capacities) and kinetic parameters (in terms of reaction rate constants at a high pressure limit) should be instrumental in building a robust kinetic model for the oxidation of morpholine. 相似文献
16.
《Journal of Analytical and Applied Pyrolysis》2007,78(1):46-57
The behavior of individual polymers (EVA, PS, PVC and cellulose) was investigated under pyrolysis at different heating rates. A kinetic model is proposed for the weight loss and compared with the experimental results and the kinetic parameters were determined and compared with the available published data. IR spectrometric analysis was used to follow the evolution of the gaseous pyrolysis products versus the temperature. Analysis of online FT-IR spectra confirmed the initial loss of acetic acid for EVA and one HCl for PVC. 相似文献
17.
Powder samples of the compounds (A3N)As (A = Mg, Ca, Sr, Ba) were prepared by reacting the respective alkaline earth metal nitrides and arsenic in nickel ampoules. (Mg3N)As crystallizes in a cubic unit cell (space group Pm3 m, no. 221) with inverse perovskite structure. The analogous compounds of calcium, strontium, and barium crystallize in an orthorhombic unit cell (space group Pnma, no. 62) as distorted inverse perovskites in the GdFeO3 structure type. The degree of distortion was quantified based on a newly developed vectorial comparison of the atomic sites of coordination polyhedra with the ideal positions (PolyDis). Based on this analysis, the distortion increases with the size of the alkaline earth metal cation. 相似文献
18.
19.
Manganese oxide catalysts modified by Mg, Ca, Sr and Ba additives were studied for methane deep oxidation. The Ba promoted sample is the most effective one for this reaction among all the catalysts. The catalysts were examined by BET, XRD and H2-TPR techniques. It is speculated that the formation of some more active oxygen species and the formation of basic sites from the addition of alkaline earth metal oxides are responsible for the improvement of the inherent CH4 oxidation activity of the modified catalysts. 相似文献
20.
This work describes a structure and kinetic stability study of some complexes with the general formula MN, where M are the alkaline earth metal atoms, Be, Mg, Ca, Sr, and Ba. A complex (A) with two points of attachment to the N5 ring is the most energetically favored for all metals considered here. Except for Be, structure (B) containing a mono‐coordinated metal atom is a transition state corresponding to the metal atom transfer around the N5 ring. Pyramidal structure (C) is kinetically unstable with the low isomerization barrier height, ranging from 0.9 to 6.7 kcal/mol. The dissociation barrier heights for the lowest energy isomers (A) are predicted to be 1.2–18.7 kcal/mol (Be to Ba), indicating that kinetic stability increases from lighter to heavier metal atoms. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004 相似文献