首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diels–Alder cycloaddition reaction is one of the most powerful strategies for the construction of six-membered carbocyclic and heterocyclic systems, in most cases with high regio- and stereoselectivity. In this review, an insight into the most relevant advances on sustainable Diels–Alder reactions since 2010 is provided. Various environmentally benign solvent systems are discussed, namely bio-based derived solvents (such as glycerol and gluconic acid), polyethylene glycol, deep eutectic solvents, supercritical carbon dioxide, water and water-based aqueous systems. Issues such as method’s scope, efficiency, selectivity and reaction mechanism, as well as sustainability, advantages and limitations of these reaction media, are addressed.  相似文献   

2.
Diels–Alder reactions on the surface of nanoparticles allow a thermoreversible functionalization of the nanosized building blocks. We report the synthesis of well-defined magnetite nanoparticles by thermal decomposition reaction and their functionalization with maleimide groups. Attachment of these dienophiles was realized by the synthesis of organophosphonate coupling agents and a partial ligand exchange of the original carboxylic acid groups. The functionalized iron oxide particles allow a covalent surface attachment of a furfuryl-functionalized rhodamine B dye by a Diels–Alder reaction at 60 °C. The resulting particles showed the typical fluorescence of rhodamine B. The dye can be cleaved off the particle surface by a retro-Diels–Alder reaction. The study showed that organic functions can be thermoreversibly attached onto inorganic nanoparticles.  相似文献   

3.
The Diels–Alder cycloaddition between bisdienes and bisdienophile incorporating the 7-oxa-bicyclo[2.2.1]heptane unit are well known to show high diastereoselectivity that can be exploited for the synthesis of molecular belts. The related bisdiene 5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octene is a valuable building block for the synthesis of photoprecursors for acenes, but it has not been employed for the synthesis of molecular belts. The present work investigates by computational means the Diels–Alder reaction between these bisdiene building blocks with syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene, which shows that the diastereoselectivity of the Diels–Alder reaction of the etheno-bridged bisdiene is lower than that of the epoxy-bridged bisdiene. The reaction of the etheno-bridged bisdiene and syn-1,4,5,8-tetrahydro-1,4:5,8-diepoxyanthracene in 2:1 ratio yields two diastereomers that differ in the orientation of the oxa and etheno bridges based on NMR and X-ray crystallography. The all-syn diastereomer can be transformed into a molecular belt by inter- and intramolecular Diels–Alder reactions with a bifunctional building block. The molecular belt could function as a synthetic intermediate en route to a [11]cyclacene photoprecursor.  相似文献   

4.
The Lewis acid(LA)‐catalyzed Diels–Alder reaction between isoprene and methyl acrylate was investigated quantum chemically using a combined density functional theory and coupled‐cluster theory approach. Computed activation energies systematically decrease as the strength of the LA increases along the series I2<SnCl4<TiCl4<ZnCl2<BF3<AlCl3. Emerging from our activation strain and Kohn–Sham molecular orbital bonding analysis was an unprecedented finding, namely that the LAs accelerate the Diels–Alder reaction by a diminished Pauli repulsion between the π‐electron systems of the diene and dienophile. Our results oppose the widely accepted view that LAs catalyze the Diels–Alder reaction by enhancing the donor–acceptor [HOMOdiene–LUMOdienophile] interaction and constitute a novel physical mechanism for this indispensable textbook organic reaction.  相似文献   

5.
The sorbicillinoids are a class of biologically active and structurally diverse fungal polyketides arising from sorbicillin. Through co‐expression of sorA, sorB, sorC, and sorD from Trichoderma reesei QM6a, the biosynthetic pathway to epoxysorbicillinol and dimeric sorbicillinoids, which resemble Diels–Alder‐like and Michael‐addition‐like products, was reconstituted in Aspergillus oryzae NSAR1. Expression and feeding experiments demonstrated the crucial requirement of the flavin‐dependent monooxygenase SorD for the formation of dimeric sorbicillinoids, hybrid sorbicillinoids, and epoxysorbicillinol in vivo. In contrast to prior reports, SorD catalyses neither the oxidation of 2′,3′‐dihydrosorbicillin to sorbicillin nor the oxidation of sorbicillinol to oxosorbicillinol. This is the first report that both the intermolecular Diels–Alder and Michael dimerization reactions, as well as the epoxidation of sorbicillinol are catalysed in vivo by SorD.  相似文献   

6.
7.
The reactivity of thiophene in Diels-Alder reactions is investigated with different maleimide derivatives. In this paper, we have synthesized for the first time the Diels–Alder adducts of thiophene at room temperature and atmospheric pressure. Maleimido–thiophene adducts were promoted by AlCl3. The effects of solvent, time, temperature and the use of different Lewis acids were studied, showing dramatic effects for solvent and Lewis acid. Furthermore, the catalysis with AlCl3 is highly stereoselective, preferably providing the exo form of the adduct. Additionally, we also discovered the ability of AlCl3 to catalyze the arylation of maleimides to yield 3-aryl succinimides in a straightforward manner following a Friedel–Crafts-type addition. The inclusion of a selenocyanate group contributes to the cytotoxic activity of the adduct. This derivatization (from compound 7 to compound 15) results in an average GI50 value of 1.98 µM in the DTP (NCI-60) cell panel, resulting in being especially active in renal cancer cells.  相似文献   

8.
The plants of the Moraceae family are producers of a great variety of polyphenolic natural products. Among these, the Diels–Alder type adducts (DAAs) are endowed with a unique cyclohexene scaffold, since they are biosynthesized from [4+2] cycloaddition of different polyphenolic precursors such as chalcones and dehydroprenyl polyphenols. To date, more than 150 DAAs have been isolated and characterized from Moraceous and related plants. The main source of DAAs is the mulberry root bark, also known as “Sang-Bai-Pi” in Traditional Chinese Medicine, but they have also been isolated from root bark, stem barks, roots, stems or twigs, leaves, and callus cultures of Moraceous and other related plants. Since 1980, many biological activities of DAAs have been identified, including anti-HIV, antimicrobial, anti-inflammatory, and anticancer ones. For these reasons, natural DAAs have been intensively investigated, and a lot of efforts have been made to study their biosynthesis and to establish practical synthetic access. In this review, we summarized all the updated knowledge on biosynthesis, chemoenzymatic synthesis, racemic and enantioselective total synthesis, and biological activity of natural DAAs from Moraceous and related plants.  相似文献   

9.
This review highlights the state of the art of the use of iminium ions as dienophiles in Aza‐Diels–Alder (ADA) cycloadditions. An historical survey spanning the very first discovery of the reaction to modern developments, mechanistic studies and synthetic applications of the iminium variant of the ADA (iADA) reaction are presented. The discussion is focused on the intermolecular and intramolecular versions of the iADA reactions that are conducted in aqueous solutions to generate, in situ, the reactive dienophile from an amine hydrochloride and either aliphatic or aromatic aldehydes in the presence of a variety of dienes. The retro‐ADA reaction is also presented as an interesting method for the protection of amines. The use of Lewis acid catalysis in these reactions was thoroughly studied by the reactions of different amines and aldehydes conducted in the presence of lanthanide(III) complexes.  相似文献   

10.
11.
12.
1‐Aminodecalins were prepared from acyclic precursors by combining the powerful twofold diene‐transmissive Diels–Alder chemistry of [3]dendralenes with the simplicity of enamine formation. On mixing at ambient temperature, a simple dienal condenses with a primary or secondary amine to generate the enamine, a 1‐amino‐[3]dendralene in situ, and this participates as a double diene in a sequence of two Diels–Alder events with separate dienophiles. Overall, four C?C bonds and one C?N bond are formed. Mechanistic insights into these reactions are provided by means of density functional theory calculations.  相似文献   

13.
14.
Herein, by using dispersion‐corrected density functional theory, we investigated the Diels–Alder chemistry of pristine and defective graphene. Three dienes were considered, namely 2,3‐dimethoxy‐1,3‐butadiene (DMBD), 9‐methylanthracene (9MA), and 9,10‐dimethylanthracene (910DMA). The dienophiles that were assayed were tetracyanoethylene (TCNE) and maleic anhydride (MA). When pristine graphene acted as the dienophile, we found that the cycloaddition products were 47–63 kcal mol?1 less stable than the reactants, thus making the reaction very difficult. The presence of Stone–Wales translocations, 585 double vacancies, or 555‐777 reconstructed double vacancies did not significantly improve the reactivity because the cycloaddition products were still located at higher energy than the reactants. However, for the addition of 910DMA to single vacancies, the product showed comparable stability to the separated reactants, whereas for unsaturated armchair edges the reaction was extremely favorable. With regards the reactions with dienophiles, for TCNE, the cycloaddition product was metastable. In the case of MA, we observed a reaction product that was less stable than the reactants by 50 kcal mol?1. For the reactions between graphene as a diene and the dienophiles, we found that the most‐promising defects were single vacancies and unsaturated armchair edges, because the other three defects were much‐less reactive. Thus, we conclude that the reactions with these above‐mentioned dienes may proceed on pristine or defective sheets with heating, despite being endergonic. The same statement also applies to the dienophile maleic anhydride. However, for TCNE, the reaction is only likely to occur onto single vacancies or unsaturated armchair edges. We conclude that the dienophile character of graphene is slightly stronger than its behavior as a diene.  相似文献   

15.
PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.  相似文献   

16.
A general organocatalytic cross‐dienamine activation strategy to produce chiral multifunctionalized norcamphor compounds having a large diversity in substitution pattern is presented. The strategy is based on a Diels–Alder reaction of an amino‐activated cyclopentenone reacting with most common classes of electron‐deficient olefins, such as nitro‐, ester‐, amide‐, and cyano‐substituted olefins, chalcones, conjugated malononitriles, CF3‐substituted enones, and fumarates. The corresponding norcamphor derivatives are formed in good yield, excellent enantioselectivities, and with complete diastereoselectivity. Furthermore, it is demonstrated that quaternary stereocenters and spiro norcamphor compounds can be formed with high stereoselectivity. The present development provides a simple, direct, and efficient approach for the preparation of important norcamphor scaffolds.  相似文献   

17.
The use of the ionic liquid/n‐hexane interface as a new class of reaction medium for the Diels–Alder reaction gives large rate enhancements of the order of 106 to 108 times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H‐bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity.  相似文献   

18.
Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.  相似文献   

19.
Liquid‐crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels–Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo‐ to exo‐product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo‐product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo‐ and endo‐transition states in solvents with layered, smectic ordering compared to those that are isotropic.  相似文献   

20.
In general, Lewis acid catalysts are metal‐based compounds that owe their reactivity to a low‐lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels–Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号