首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature–dependent electrical resistivity ρ(T) in metallic and semiconducting phase of ZnO nanostructures is theoretically analysed. ρ(T) shows semiconducting phase in low temperature regime (140 K<T<180 K), shows an absolute minimum near 180 K and increases linearly with T at high temperatures (200 K<T<300 K). The resistivity in metallic phase is estimated within the framework of electron–phonon and electron–electron scattering mechanism. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch–Gruneisen (BG) model of resistivity. The electron–electron contributions ρe?e=BT2 in addition with electron–phonon scattering is also estimated for complete understanding of resistivity in metallic phase. Estimated contribution to resistivity by considering both phonons, i.e., ωac and ωop and the zero limited resistivity are added with electron–electron interaction ρe–e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model. The SPC model consistently retraces the low temperature resistivity behaviour (140 K<T<180 K). Finally the theoretically calculated resistivity is compared with experimental data which appears favourable with the present analysis in wide temperature range.  相似文献   

2.
Hall effect and magnetoresistance Δρ/ρ(0) (MR) in the normal state have been measured on single crystals of Ba1?xKxFe2As2 and NdFeAsO1?xFx. Detailed analysis reveal the following conclusions: (1) For the parent phases of Ba1?xKx Fe2As2 and NdFeAsO1?xFx, large Hall effect and MR with strong temperature dependence were observed below a characteristic temperature corresponding to the antiferromagnetic/ structural transition. The field dependence of the Hall resistivity ρxy exhibits a non-linear behavior, which is accompanied by the violation of the B-square feature of the longitudinal magnetoresistivity Δρxx(B)/ρxx(0). A closer inspection further indicates that they are well related to each other and could be attributed to the multi-band effect or spin-related scattering. (2) The superconducting samples show much smaller Hall coefficient and MR in the normal state. The Hall coefficient shows a weaker temperature dependence compared to the parent phase, while the mean scattering rate 1/τH has a power-law like temperature dependence as 1/τH  Tn (n = 2–3). (3) For a Ba1?xKxFe2 As2 sample with Tc = 36 K, the field dependence of MR is complicated and the feature varies in different temperature regions. A drastic change of Δρ/ρ(0) was found between 80 K and 100 K, which corresponds very well to the maximum of the temperature derivative of the resistivity. This may be attributed to the spin-related scattering of electrons. (4) A comparison between the parent phase and the superconducting sample with Tc = 50 K in NdFeAsO1?xFx suggests that the electronic transport properties in the normal state cannot be easily understood with the simple multi-band model, while a picture concerning a suppression to the quasiparticle density of states at the Fermi energy is more reasonable.  相似文献   

3.
We have measured the zero-field electrical resistivity in the temperature range 5–295 K and magnetoresistance in magnetic fields of up to 12 T of Gd5(Si0.1Ge0.9)4. The resistivity changes drastically at the magnetostructural first-order transition (TC≅80 K on heating). This transition can be induced reversibly by the application of an external magnetic field above TC, producing a concomitant giant magnetoresistance (GMR) effect, Δρ/ρ≅−50%. This study demonstrates that (in addition to giant magnetocaloric and magnetoelastic effects) GMR can be tuned between ∼20 and ∼290 K in Gd5(SixGe1−x)4 with x⩽0.5 by simply adjusting the Si : Ge ratio.  相似文献   

4.
We report on photoluminescence and Raman scattering performed at low temperature (T =  10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL =  100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 =  285.6 cm−1forL =  11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.  相似文献   

5.
We report the achievement of transport critical currents in Sr0.6K0.4Fe2As2 wires and tapes with a Tc = 34 K. The wires and tapes were fabricated through an in situ powder-in-tube process. Silver was used as a chemical addition as well as a sheath material. All the wire and tape samples have shown the ability to transport superconducting current. Critical current density Jc was enhanced upon silver addition, and at 4.2 K, a largest Jc of ~1200 A/cm2 (Ic = 9 A) was achieved for 20% silver added tapes, which is the highest in iron-based wires and tapes so far. The Jc is almost field independent between 1 T and 10 T, exhibiting a strong vortex pinning. Such a high transport critical current density is attributed to the weak reaction between the silver sheath and the superconducting core, as well as an improved connectivity between grains. We also identify a weak-link behavior from the apparent drop of Jc at low fields and a hysteretic phenomenon. Finally, we found that compared to Fe, Ta and Nb tubes, Ag was the best sheath material for the fabrication of high-performance 122 type pnictide wires and tapes.  相似文献   

6.
Ceramic compositions of a complex perovskite CaXPb(1?X)TiO3 (CPT) systems with x=0.6, 0.7 and 0.8 were prepared by mechanical mixing of their oxides (CaTiO3 and PbTiO3). The structure of the (CPT) ceramics was characterized by X-ray diffraction (XRD) The ceramics transform gradually from orthorhombic phase (pseudo cubic phase) to cubic phase by increasing pb content percent. The dc resistivity ρ(t) versus temperature (range 300–525 K) for x=0.6, 0.7 and 0.8. The ρ.T/curves reveal that samples exhibit a metallic behaviour at low temperature and undergo a metal-semiconductor transition with increasing temperature at Tp=373 K, 343 K and 333 K, for x=0.6, 0.7 and 0.8, respectively. The nature of conduction mechanism is studied in semiconductor region by studying the current–voltage temperature characteristics. The current–voltage characteristics were interpreted in terms of Poole–Frenkel type of conduction mechanism.  相似文献   

7.
《Current Applied Physics》2010,10(2):655-658
We have quantitatively investigated the Hall effect in [Co, CoFe/Pt] multilayer films. The [Co, CoFe/Pt] multilayers exhibit large spontaneous Hall resistivity (ρH) and Hall angle (ρH/ρ). Even though the Hall resistivity in [Co, CoFe/Pt] multilayer films (2.7–4 × 10−7 Ω cm) is smaller than that of amorphous RE–TM alloy films which show large spontaneous Hall resistivity (<2 × 10−6 Ω cm), the Hall angle of multilayer (6–8%) is almost twice than that in amorphous rare earth–transition metal alloy films (∼3%). The Hall angle provides evidence of the effects of the exchange interaction of the Hall scattering. The exchange is between conduction electron spins and the localized spins of the transition metal. The large Hall angle of [Co, CoFe/Pt] multilayer can be considered due to the high spin polarization and high Curie temperature of Co and CoFe transition metal layers. Even though the role of interfaces and surfaces in the magnetic properties of multilayer films may dominate that of the bulk, the Hall effects in [Co, CoFe/Pt] multilayer may be mainly dominated by the bulk effect.  相似文献   

8.
We show that the zero-field normal-state resistivity of temperature-dependent resistivity ρ(T) of SrFe2?xNixAs2 can be reproduced by the expression ρ(T) = ρ0 + c T exp(?2Δ/T). ρ(T) can be scaled using both this expression where the energy scale Δ, c and the residual resistivity ρ0 are scaling parameters and a recently proposed model-independent scaling method (H.G. Luo, Y.H. Su, T. Xiang, Phys. Rev. B 77 (2008) 014529). The scaling parameters have been calculated and the compositional variation of 2Δ(x) has been determined. This dependence show almost a linear decreasing in the underdoped regime similar to that reported for cuprates. The existence of a universal metallic ρ(T) curve in a wide temperature range which, however, is restricted for the underdoped compounds to temperatures above a structural and anitiferromagnetic transition is interpreted as an indication of a single mechanism which dominates the scattering of the charge carriers in SrFe2?xNixAs2 (x = 0–0.3).  相似文献   

9.
In this work the Nb2InC phase is investigated by X-ray diffraction, heat capacity, magnetic and resistivity measurements. Polycrystalline samples with Nb2InC nominal compositions were prepared by solid state reaction. X-ray powder patterns suggest that all peaks can be indexed with the hexagonal phase of Cr2AlC prototype. The electrical resistance as a function of temperature for Nb2InC shows superconducting behavior below 7.5 K. The M(H) data show typical type-II superconductivity with HC1  90 Oe at 1.8 K. The specific heat data are consistent with bulk superconductivity. The Sommerfeld constant is estimated as γ  12.6 mJ mol?1 K?1.  相似文献   

10.
Spectral-kinetics properties of photo-scintillation excited with single light pulses of a nitrogen laser (λ=337.1 nm, t1/2=5 ns, Q=1 mJ) have been studied in CsI:Eu crystals at temperature within 80–300 K. It is found that the exponential decay of 463 nm emission band has a time constant which grows from 0.85 μs at 78 K to 1.6 μs at 380 K. Such an anomalous temperature behavior of 463 nm emission decay kinetics is discussed in terms of the crystal thermal expansion. It has been proposed that 463 nm emission is caused by a cluster center consisting of three dipoles Eu2+vc? bounded with each other in a hexagon. Owing to the exchange resonance in the cluster, the energy passes from an excited dipole to a non-excited one and the distance between them gets longer due to thermal expansion of the crystal.  相似文献   

11.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

12.
In this work we demonstrate the preparation of Er3+ doped perovskite ferroelectric Na0.5Bi0.5TiO3 nanocrystals and their application in temperature sensing. The samples were synthesized via a facile hydrothermal method. Upconversion emission at 528 nm and 547 nm from two thermodynamically coupled excited states of Er3+ were recorded in the temperature from 80 K to 480 K under the excitation of a 980 nm diode laser. The emission intensity ratio (I528/I547) as a function of the temperature was investigated. A sensitivity of 0.0053 K−1 is observed at 400 K, suggesting they are promising candidate for nanothermometers.  相似文献   

13.
We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr2CrReO6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr2CrReO6 (SCRO) (0 0 1) [1 0 0]∥SrTiO3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of MS (300 K)=1 μB/f.u. and ρ (300 K)=2.8  cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is TC=481(2) K. We believe these materials be of interest as electrodes in spintronic devices.  相似文献   

14.
We have investigated the exchange bias effect in micron-sized ferromagnetic wires made from Co and Ni80Fe20 films. The wires were fabricated using optical lithography, metallization by sputtering and lift-off technique. Magnetotransport measurements were performed at temperatures ranging from 3 to 300 K. We observed marked changes in the magnetoresistance (MR) properties as the temperature is varied. At 300 K, the field at which the sharp peak occurs corresponding to the magnetization reversal of the Co wires is 167 Oe and is symmetrical about the origin. As the temperature was decreased to 3 K, we observed a shift in the peak positions of the MR characteristics for both the forward and reverse field sweeps corresponding to a loop shift of 582 Oe in the field axis. The asymmetric shift in the MR loops at low temperatures clearly indicates the exchange bias between ferromagnetic (Co) and antiferromagnetic parts (Co-oxide at the surfaces) from natural oxidation. Ni80Fe20 wires of the same geometry showed similar effect with a low exchange bias field. The onset of exchange biasing effect is found to be 70 and 15 K for the Co and Ni80Fe20 wires, respectively. A striking effect is the existence of exchange biasing effect from the sidewalls of the wires even when the wires were capped with Au film.  相似文献   

15.
Single-domain nanoscale magnetic iron particles have been embedded uniformly in an amorphous matrix of alumina using a pulsed laser deposition technique. Structural characterization by transmission electron microscopy (TEM) reveals the presence of a crystalline iron and an amorphous alumina phase. Fine particle magnetism have been investigated by carrying out field and temperature dependence of magnetization measurements using superconducting quantum interference device magnetometer. The particle size of Fe in Al2O3 matrices prepared by changing the deposition time of Fe, have been found to be 9, 7 and 5 nm from TEM studies. At 10 K, the coercivities of these samples are found be 450, 350 and 150 Oe, respectively. At 300 K, the coercivity of Fe–Al2O3 sample decreases from 100 to 50 Oe as the particle size decreases from 9 to 7 nm and finally the sample turns superparamagnetic when the Fe particle size becomes around 5 nm. Based on the calculated value of blocking temperature, TB, (481 K), magnetic anisotropy K (4.8×105 erg/cm3) for Fe, and the Boltzmann constant kB (1.38×10−16 erg/K) from TB=KV/25kB, the mean radius of Fe particles is found to be 9.3 nm. in one of the samples. This is in good agreement with the particle size measured using TEM studies.  相似文献   

16.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

17.
We have studied the effect of negative chemical pressure in the RuGd1.5(Ce0.5?xPrx)Sr2Cu2O10?δ with Pr content of 0.0 ? x ? 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ? x ? 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr3+,4+ and Ce4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the antiferromagnetic and ferromagnetic transition temperatures, which is probably due to the presence of a spin glass region. There exist two magnetic transition temperatures for 0.0 ? x ? 0.2 which respectively change from TM = 155 K to 144 K and from Tirr = 115 K to 70 K. The magnetization versus applied magnetic field isotherms at 77 K and 300 K show that the remanent magnetization and coercivity are lower for samples with higher Pr content.  相似文献   

18.
《Current Applied Physics》2010,10(3):866-870
Perovskite La1−xSrxFeO3 (0.10  x  0.20) ceramics have been synthesized by the conventional solid-state reaction technique. Their electrical resistivity, Seebeck coefficient and thermal conductivity have been measured. It has been found that the increase of Sr content reduces significantly both the electrical resistivity and the Seebeck coefficient, but slightly increases the high-temperature thermal conductivity. An adiabatic hopping conduction mechanism of small polaron is suggested from the analysis of the temperature dependence of the electrical resistivity. Seebeck coefficients decrease with increasing temperature, and saturate at temperature above 573 K. The saturated value of Seebeck coefficient decreases with increasing of Sr contents, from 200 μV/K for x = 0.10 to 100 μV/K for x = 0.20. All samples exhibit lower thermal conductivity with values around 2.6 W/m K. The highest dimensionless figure of merit is 0.031 at temperature 973 K in La0.88Sr0.12FeO3.  相似文献   

19.
The magnetic properties of Fe2O3 nanoparticles (average diameter ∅≅3 nm) in alumina (68% Fe2O3 in weight) have been investigated by magnetization measurements. The results indicate a superparamagnetic behavior of interacting particles, which block with decreasing temperature (the zero-field-cooled susceptibility shows a maximum at T≅145 K) with a distribution of relaxation times. A change of magnetic regime is observed below ∼60 K, due to the increasing interparticle interactions and local surface anisotropy.  相似文献   

20.
Transport properties of (Cu, C)Ba2CuOx [(Cu, C)-1201] thin films have been characterized by in situ temperature dependence of resistivity, without breaking vacuum from the deposition to the measurement. In in situ transport properties measurements, the obtained results reveal that (Cu, C)Ba2CuOx films exhibit Tc > 20 K on the cased of conductivity at 290 K (σ[290 K]) > 4 × 102 S/cm and temperature coefficient of resistivity (TCR) > 1.5 × 10?3 K?1, and doping level of them should be in between under-doped and optimally-doped states. Their results suggest that there would be possible to further increases of Tc, and XPS data suggest that (Cu, C)-system should have the excellent dopability in their charge reservoir and the possibility of low anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号