首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.  相似文献   

2.
Bounded rationality is one crucial component in human behaviours. It plays a key role in the typical collective behaviour of evacuation, in which heterogeneous information can lead to deviations from optimal choices. In this study, we propose a framework of deep learning to extract a key dynamical parameter that drives crowd evacuation behaviour in a cellular automaton (CA) model. On simulation data sets of a replica dynamic CA model, trained deep convolution neural networks (CNNs) can accurately predict dynamics from multiple frames of images. The dynamical parameter could be regarded as a factor describing the optimality of path-choosing decisions in evacuation behaviour. In addition, it should be noted that the performance of this method is robust to incomplete images, in which the information loss caused by cutting images does not hinder the feasibility of the method. Moreover, this framework provides us with a platform to quantitatively measure the optimal strategy in evacuation, and this approach can be extended to other well-designed crowd behaviour experiments.  相似文献   

3.
Identification of the diffusion type of molecules in living cells is crucial to deduct their driving forces and hence to get insight into the characteristics of the cells. In this paper, deep residual networks have been used to classify the trajectories of molecules. We started from the well known ResNet architecture, developed for image classification, and carried out a series of numerical experiments to adapt it to detection of diffusion modes. We managed to find a model that has a better accuracy than the initial network, but contains only a small fraction of its parameters. The reduced size significantly shortened the training time of the model. Moreover, the resulting network has less tendency to overfitting and generalizes better to unseen data.  相似文献   

4.
In this paper, we study the learnability of the Boolean inner product by a systematic simulation study. The family of the Boolean inner product function is known to be representable by neural networks of threshold neurons of depth 3 with only 2n+1 units (n the input dimension)—whereas an exact representation by a depth 2 network cannot possibly be of polynomial size. This result can be seen as a strong argument for deep neural network architectures. In our study, we found that this depth 3 architecture of the Boolean inner product is difficult to train, much harder than the depth 2 network, at least for the small input size scenarios n16. Nonetheless, the accuracy of the deep architecture increased with the dimension of the input space to 94% on average, which means that multiple restarts are needed to find the compact depth 3 architecture. Replacing the fully connected first layer by a partially connected layer (a kind of convolutional layer sparsely connected with weight sharing) can significantly improve the learning performance up to 99% accuracy in simulations. Another way to improve the learnability of the compact depth 3 representation of the inner product could be achieved by adding just a few additional units into the first hidden layer.  相似文献   

5.
Human fall identification can play a significant role in generating sensor based alarm systems, assisting physical therapists not only to reduce after fall effects but also to save human lives. Usually, elderly people suffer from various kinds of diseases and fall action is a very frequently occurring circumstance at this time for them. In this regard, this paper represents an architecture to classify fall events from others indoor natural activities of human beings. Video frame generator is applied to extract frame from video clips. Initially, a two dimensional convolutional neural network (2DCNN) model is proposed to extract features from video frames. Afterward, gated recurrent unit (GRU) network finds the temporal dependency of human movement. Binary cross-entropy loss function is calculated to update the attributes of the network like weights, learning rate to minimize the losses. Finally, sigmoid classifier is used for binary classification to detect human fall events. Experimental result shows that the proposed model obtains an accuracy of 99%, which outperforms other state-of-the-art models.  相似文献   

6.
7.
The advancement of sensing technologies coupled with the rapid progress in big data analysis has ushered in a new era in intelligent transport and smart city applications. In this context, transportation mode detection (TMD) of mobile users is a field that has gained significant traction in recent years. In this paper, we present a deep learning approach for transportation mode detection using multimodal sensor data elicited from user smartphones. The approach is based on long short-term Memory networks and Bayesian optimization of their parameters. We conducted an extensive experimental evaluation of the proposed approach, which attains very high recognition rates, against a multitude of machine learning approaches, including state-of-the-art methods. We also discuss issues regarding feature correlation and the impact of dimensionality reduction.  相似文献   

8.
Recently, there has been a huge rise in malware growth, which creates a significant security threat to organizations and individuals. Despite the incessant efforts of cybersecurity research to defend against malware threats, malware developers discover new ways to evade these defense techniques. Traditional static and dynamic analysis methods are ineffective in identifying new malware and pose high overhead in terms of memory and time. Typical machine learning approaches that train a classifier based on handcrafted features are also not sufficiently potent against these evasive techniques and require more efforts due to feature-engineering. Recent malware detectors indicate performance degradation due to class imbalance in malware datasets. To resolve these challenges, this work adopts a visualization-based method, where malware binaries are depicted as two-dimensional images and classified by a deep learning model. We propose an efficient malware detection system based on deep learning. The system uses a reweighted class-balanced loss function in the final classification layer of the DenseNet model to achieve significant performance improvements in classifying malware by handling imbalanced data issues. Comprehensive experiments performed on four benchmark malware datasets show that the proposed approach can detect new malware samples with higher accuracy (98.23% for the Malimg dataset, 98.46% for the BIG 2015 dataset, 98.21% for the MaleVis dataset, and 89.48% for the unseen Malicia dataset) and reduced false-positive rates when compared with conventional malware mitigation techniques while maintaining low computational time. The proposed malware detection solution is also reliable and effective against obfuscation attacks.  相似文献   

9.
This paper presents a set of methods, jointly called PGraphD*, which includes two new methods (PGraphDD-QM and PGraphDD-SS) for drift detection and one new method (PGraphDL) for drift localisation in business processes. The methods are based on deep learning and graphs, with PGraphDD-QM and PGraphDD-SS employing a quality metric and a similarity score for detecting drifts, respectively. According to experimental results, PGraphDD-SS outperforms PGraphDD-QM in drift detection, achieving an accuracy score of 100% over the majority of synthetic logs and an accuracy score of 80% over a complex real-life log. Furthermore, PGraphDD-SS detects drifts with delays that are 59% shorter on average compared to the best performing state-of-the-art method.  相似文献   

10.

近年来自适应光学(AO)系统向着小型化和低成本化趋势发展,无波前探测自适应光学(WFSless AO)系统由于结构简单、应用范围广,成为目前相关领域的研究热点。硬件环境确定后,系统控制算法决定了WFSless AO系统的校正效果和系统收敛速度。新兴的深度学习及人工神经网络为WFSless AO系统控制算法注入了新的活力,进一步推动了WFSless AO系统的理论发展与应用发展。在回顾前期WFSless AO系统控制算法的基础上,全面介绍了近年来卷积神经网络(CNN)、长短期记忆神经网络(LSTM)、深度强化学习在WFSless AO系统控制中的应用,并对WFSless AO系统中各种深度学习模型的特点进行了总结。概述了WFSless AO技术在天文观测、显微成像、眼底成像、激光通信等领域的应用。

  相似文献   

11.
汪璐 《物理》2017,46(9):597-605
深度学习是一类通过多层信息抽象来学习复杂数据内在表示关系的机器学习算法。近年来,深度学习算法在物体识别和定位、语音识别等人工智能领域,取得了飞跃性进展。文章将首先介绍深度学习算法的基本原理及其在高能物理计算中应用的主要动机。然后结合实例综述卷积神经网络、递归神经网络和对抗生成网络等深度学习算法模型的应用。最后,文章将介绍深度学习与现有高能物理计算环境结合的现状、问题及一些思考。  相似文献   

12.
脑动脉瘤破裂造成的蛛网膜下腔出血致死致残率极高,借助深度学习网络辅助医生实现高效筛查具有重要意义.为提高基于时间飞跃法磁共振血管造影(Time of Flight-Magnetic Resonance Angiography,TOF-MRA)的脑动脉瘤自动检测的精度,本文基于模糊标签方式,提出一种基于变体3D U-Net和双分支通道注意力(Dual-branch Channel Attention,DCA)的深度神经网络DCAU-Net,DCA模块可以自适应地调整通道特征的响应,提高特征提取能力.首先对260例病例的TOF-MRA影像预处理,将数据集分为174例训练集、43例验证集和43例测试集,然后使用处理后的数据训练和验证DCAU-Net,测试集实验结果表明DCAU-Net可以达到90.69%的敏感度,0.83个/例的假阳性计数和0.52的阳性预测值,有望为动脉瘤筛查提供参考.  相似文献   

13.
Device-to-device (D2D) technology enables direct communication between devices, which can effectively solve the problem of insufficient spectrum resources in 5G communication technology. Since the channels are shared among multiple D2D user pairs, it may lead to serious interference between D2D user pairs. In order to reduce interference, effectively increase network capacity, and improve wireless spectrum utilization, this paper proposed a distributed resource allocation algorithm with the joint of a deep Q network (DQN) and an unsupervised learning network. Firstly, a DQN algorithm was constructed to solve the channel allocation in the dynamic and unknown environment in a distributed manner. Then, a deep power control neural network with the unsupervised learning strategy was constructed to output an optimized channel power control scheme to maximize the spectrum transmit sum-rate through the corresponding constraint processing. As opposed to traditional centralized approaches that require the collection of instantaneous global network information, the algorithm proposed in this paper used each transmitter as a learning agent to make channel selection and power control through a small amount of state information collected locally. The simulation results showed that the proposed algorithm was more effective in increasing the convergence speed and maximizing the transmit sum-rate than other traditional centralized and distributed algorithms.  相似文献   

14.
In many decision-making scenarios, ranging from recreational activities to healthcare and policing, the use of artificial intelligence coupled with the ability to learn from historical data is becoming ubiquitous. This widespread adoption of automated systems is accompanied by the increasing concerns regarding their ethical implications. Fundamental rights, such as the ones that require the preservation of privacy, do not discriminate based on sensible attributes (e.g., gender, ethnicity, political/sexual orientation), or require one to provide an explanation for a decision, are daily undermined by the use of increasingly complex and less understandable yet more accurate learning algorithms. For this purpose, in this work, we work toward the development of systems able to ensure trustworthiness by delivering privacy, fairness, and explainability by design. In particular, we show that it is possible to simultaneously learn from data while preserving the privacy of the individuals thanks to the use of Homomorphic Encryption, ensuring fairness by learning a fair representation from the data, and ensuring explainable decisions with local and global explanations without compromising the accuracy of the final models. We test our approach on a widespread but still controversial application, namely face recognition, using the recent FairFace dataset to prove the validity of our approach.  相似文献   

15.
Boosting the sales of e-commerce services is guaranteed once users find more items matching their interests in a short amount of time. Consequently, recommendation systems have become a crucial part of any successful e-commerce service. Although various recommendation techniques could be used in e-commerce, a considerable amount of attention has been drawn to session-based recommendation systems in recent years. This growing interest is due to security concerns over collecting personalized user behavior data, especially due to recent general data protection regulations. In this work, we present a comprehensive evaluation of the state-of-the-art deep learning approaches used in the session-based recommendation. In session-based recommendation, a recommendation system counts on the sequence of events made by a user within the same session to predict and endorse other items that are more likely to correlate with their preferences. Our extensive experiments investigate baseline techniques (e.g., nearest neighbors and pattern mining algorithms) and deep learning approaches (e.g., recurrent neural networks, graph neural networks, and attention-based networks). Our evaluations show that advanced neural-based models and session-based nearest neighbor algorithms outperform the baseline techniques in most scenarios. However, we found that these models suffer more in the case of long sessions when there exists drift in user interests, and when there are not enough data to correctly model different items during training. Our study suggests that using the hybrid models of different approaches combined with baseline algorithms could lead to substantial results in session-based recommendations based on dataset characteristics. We also discuss the drawbacks of current session-based recommendation algorithms and further open research directions in this field.  相似文献   

16.
As state-of-the-art deep neural networks are being deployed at the core level of increasingly large numbers of AI-based products and services, the incentive for “copying them” (i.e., their intellectual property, manifested through the knowledge that is encapsulated in them) either by adversaries or commercial competitors is expected to considerably increase over time. The most efficient way to extract or steal knowledge from such networks is by querying them using a large dataset of random samples and recording their output, which is followed by the training of a student network, aiming to eventually mimic these outputs, without making any assumption about the original networks. The most effective way to protect against such a mimicking attack is to answer queries with the classification result only, omitting confidence values associated with the softmax layer. In this paper, we present a novel method for generating composite images for attacking a mentor neural network using a student model. Our method assumes no information regarding the mentor’s training dataset, architecture, or weights. Furthermore, assuming no information regarding the mentor’s softmax output values, our method successfully mimics the given neural network and is capable of stealing large portions (and sometimes all) of its encapsulated knowledge. Our student model achieved 99% relative accuracy to the protected mentor model on the Cifar-10 test set. In addition, we demonstrate that our student network (which copies the mentor) is impervious to watermarking protection methods and thus would evade being detected as a stolen model by existing dedicated techniques. Our results imply that all current neural networks are vulnerable to mimicking attacks, even if they do not divulge anything but the most basic required output, and that the student model that mimics them cannot be easily detected using currently available techniques.  相似文献   

17.
Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing network traffic prompts an introduction of new solutions that allow increasing the transmission speed without significant increase of the service cost. In order to achieve this objective simpler and faster, DWDM network reconfiguration procedures are needed. A key problem that is intrinsically related to network reconfiguration is that of the quality of transmission assessment. Thus, in this contribution a Machine Learning (ML) based method for an assessment of the quality of transmission is proposed. The proposed ML methods use a database, which was created only on the basis of information that is available to a DWDM network operator via the DWDM network control plane. Several types of ML classifiers are proposed and their performance is tested and compared for two real DWDM network topologies. The results obtained are promising and motivate further research.  相似文献   

18.
The breakthrough of wireless energy transmission (WET) technology has greatly promoted the wireless rechargeable sensor networks (WRSNs). A promising method to overcome the energy constraint problem in WRSNs is mobile charging by employing a mobile charger to charge sensors via WET. Recently, more and more studies have been conducted for mobile charging scheduling under dynamic charging environments, ignoring the consideration of the joint charging sequence scheduling and charging ratio control (JSSRC) optimal design. This paper will propose a novel attention-shared multi-agent actor–critic-based deep reinforcement learning approach for JSSRC (AMADRL-JSSRC). In AMADRL-JSSRC, we employ two heterogeneous agents named charging sequence scheduler and charging ratio controller with an independent actor network and critic network. Meanwhile, we design the reward function for them, respectively, by considering the tour length and the number of dead sensors. The AMADRL-JSSRC trains decentralized policies in multi-agent environments, using a centralized computing critic network to share an attention mechanism, and it selects relevant policy information for each agent at every charging decision. Simulation results demonstrate that the proposed AMADRL-JSSRC can efficiently prolong the lifetime of the network and reduce the number of death sensors compared with the baseline algorithms.  相似文献   

19.
冯凤琴  张辉  王莉  何勇 《光学学报》2008,28(2):326-330
月桂酸单甘油酯是用途广泛的食品添加剂,在其制备过程中经分子蒸馏得到的制备品中会有月桂酸、甘油等杂质。用化学滴定或气相色谱等传统方法检测制备品中的月桂酸单甘油酯纯度及其杂质含量过程相当繁琐。为了对月桂酸单甘油酯制备品的品质进行快速定量,先利用气相色谱法确定不同工艺下的月桂酸单甘油酯产品中各成分的含量,再利用傅立叶红外光谱仪对月桂酸单甘油酯制备品进行分析,得到它们的光谱数据曲线,并结合主成分分析和反向传播神经网络建立回归模型。通过对实验结果的均方根误差预测值PRMSE以及相关系数r辨析,预测月桂酸单甘油酯含量的结果为PRMSE=3.6376,r=0.9950,预测甘油含量的结果为PRMSE=1.4764,r=0.9795,预测月桂酸含量的结果为PRMSE=1.2859,r=0.9247。结果表明,应用光谱分析方法能够较好检测月桂酸单甘油酯、月桂酸和甘油含量。  相似文献   

20.
This review looks at some of the central relationships between artificial intelligence, psychology, and economics through the lens of information theory, specifically focusing on formal models of decision-theory. In doing so we look at a particular approach that each field has adopted and how information theory has informed the development of the ideas of each field. A key theme is expected utility theory, its connection to information theory, the Bayesian approach to decision-making and forms of (bounded) rationality. What emerges from this review is a broadly unified formal perspective derived from three very different starting points that reflect the unique principles of each field. Each of the three approaches reviewed can, in principle at least, be implemented in a computational model in such a way that, with sufficient computational power, they could be compared with human abilities in complex tasks. However, a central critique that can be applied to all three approaches was first put forward by Savage in The Foundations of Statistics and recently brought to the fore by the economist Binmore: Bayesian approaches to decision-making work in what Savage called ‘small worlds’ but cannot work in ‘large worlds’. This point, in various different guises, is central to some of the current debates about the power of artificial intelligence and its relationship to human-like learning and decision-making. Recent work on artificial intelligence has gone some way to bridging this gap but significant questions remain to be answered in all three fields in order to make progress in producing realistic models of human decision-making in the real world in which we live in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号