首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Organic-inorganic hybrid coatings containing quaternary ammonium salts (QAS) bonded to the organic-inorganic network were prepared from tetraethoxysilane and triethoxysilane terminated poly(ethylene glycol)-block-poly(ethylene) using a sol-gel process. They were applied as a thin layer (0.6-1 μm) to PE films and the antibacterial activity of the coated films was tested against both Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. Measurements at different contact times showed a rapid decrease of the viable count for both the tested strains. In particular, after 48 h of contact, a decrease of 96.4% and 99.1% of E. coli and S. aureus, respectively, was observed. The permanence of the antibacterial activity of the coated films was demonstrated through repeated washings and prolonged immersion in physiological saline solutions at 37 °C. Indeed, due to the removal of QAS moieties by the nucleophilic attack of water, the antibacterial activity after 24 h was strongly reduced when measured on samples submitted to several washings. However, a quite good antibacterial activity was observed even on the same samples after 96 h, probably due to a spontaneous partial restoring of the QAS on the surface. Very good transparency, quite good adhesion and high wettability are further features of these hybrid coatings.  相似文献   

2.
Mechanically durable, long-lasting antifog coatings based on polysaccharides were developed using a layer-by-layer (LBL) assembly process. The unique properties of these coatings are a result of a molecular-level blending of the polysaccharides, with multilayers containing chitosan and carboxymethyl cellulose providing the best overall properties. The antifog properties resulted from a strong interaction between the polar and H-bonding elements of the assembled polymers and water molecules and the concomitant formation of thin films of water. Environmental scanning electron microscopy (ESEM) studies confirmed that fogging coatings are decorated with light scattering, micrometer-sized droplets of water whereas antifogging coatings remain droplet free. To improve the mechanical durability of the multilayer films on substrates, the surface was modified via self-assembly of epoxy-functionalized silane molecules. Cross-linking chemistry was then applied to improve the mechanical robustness of the LBL films on various surfaces. These films were characterized using several techniques: optical profilometery (PL), spectroscopic ellipsometry (EL), contact angle goniometry (CA), and atomic force microscopy (AFM). The antifog properties of the films were evaluated by several tests under different environmental conditions. This work demonstrates that the unique water-adsorbing properties of polysaccharides can be exploited to create permanent antifog properties, which may be useful for various applications.  相似文献   

3.
Al2O3 and TiO2 thin films were deposited by atomic layer deposition at 80-250 °C on various polymeric substrates such as polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE) and ethylenetetrafluoroethylene (ETFE). The films were studied with FESEM, EDX, XRD, contact angle measurements and adhesion tests. The film growth rates on the thermoplastics were close to the corresponding growth rates on Si substrates. The adhesion of the films was good on PEEK and poor on PTFE. All coated surfaces showed lower water contact angles than the uncoated thermoplastics. Furthermore, the water contact angles on all TiO2-coated surfaces decreased upon UV illumination, most efficiently with crystalline TiO2 coatings.  相似文献   

4.
The aim of this study was to develop a method of manufacturing versatile hydrophobic coatings for polymers. Authors present a simple technique of polyurethane (PU) surface modification with covalently attached silicones (PDMS) or fluorocarbons (PFC). Diisocyanates were applied as linker molecules. The obtained coatings were characterized using spectroscopic analysis (FTIR), scanning acoustic microscopy (SAM) and water contact angle measurements. FTIR analysis revealed high efficiency of grafting reaction. The results of contact angle measurement indicated significant increase of hydrophobicity — from 66° (unmodified PU) to 113° (PU grafted with PDMS) and 118° (PU grafted with PFC). Acoustic microscopy analysis confirmed satisfactory homogeneity and smoothness of the fabricated layers. In vitro cell tests revealed non-adherent properties of the surfaces. Both, MTT assay and fluorescence staining confirmed non-cytotoxicity of the coatings, which makes them potential candidates for use in biomedical applications.   相似文献   

5.
Titanium carbide (TiC) thin films were deposited on D9 steel substrates at room temperature (RT), 200 °C and 400 °C. A compound TiC target was sputtered to deposit films in a non‐reactive argon atmosphere. As‐deposited films were characterised for structural, chemical and mechanical properties. Nanoindentation and scratch tests were performed to evaluate the cohesive and adhesive strength of the films, respectively. Tribological properties of the films were investigated using a tribometer. An increase in nano‐hardness from 7.2 to 10.5 GPa was observed as deposition temperature was increased. The films deposited at RT and 200 °C showed poor adhesion leading to the inferior tribological performance. In contrast, films deposited at 400 °C showed better adhesion which improved the wear resistance. Tribological behaviour of TiC thin films was correlated with contact deformation modes of coatings. These modes revealed significant role of adhesive and cohesive strength associated with the coatings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Two hybrid coatings synthesized by using alkoxysilanes as precursors in a sol–gel process, differing from each other in terms of the organic components in alkoxysilanes, have been developed to improve the water repellent properties of base paper. The sol–gel‐coated base paper samples were characterized by scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, X‐ray photoelectron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and contact angle measurements. The sol–gel coatings were found to clearly change the surface properties of base paper. Thin coating layers were formed on base paper surfaces. The topographical data indicated the formation of discontinuous thin films; the time‐of‐flight secondary ion mass spectrometry analyses confirmed that the coatings were covering the fibres but only partially covered the fibre–fibre intersections. Water and the subsequent heat treatment used as a reference treatment reduced the surface roughness and porosity and slightly changed the surface chemistry of the base paper. The wettability and absorptivity of base paper was clearly reduced by the applied coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, Sn and Nb co-doped TiO2 were coated on glazed porcelain substrates via sol–gel dip coating method. Field emission-scanning electron microscopy, transmission electron microscopy, and UV–vis spectrophotometer were used to evaluate thickness and optical properties of the thin films. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. Water contact angle on the film surfaces was measured by a contact angle analyzer under solar light irradiation. The optical results indicated that Sn/Nb dopant in TiO2 thin film changed the absorption edge from ultraviolet to visible light and exhibited excellent photo-catalytic ability for degradation of methylene blue solution under solar irradiation. Wettability results indicated that Sn and Nb dopant ions had significant effect on the hydrophilicity property of thin films.  相似文献   

8.
Anti-virulence strategy is currently considered a promising approach to overcome the global threat of the antibiotic resistance. Among different bacterial virulence factors, the biofilm formation is recognized as one of the most relevant. Considering the high and growing percentage of multi-drug resistant infections that are biofilm-mediated, new therapeutic agents capable of counteracting the formation of biofilms are urgently required. In this scenario, a new series of 18 thiazole derivatives was efficiently synthesized and evaluated for its ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923 and S. aureus ATCC 6538 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. Most of the new compounds showed a marked selectivity against the Gram-positive strains. Remarkably, five compounds exhibited BIC50 values against S. aureus ATCC 25923 ranging from 1.0 to 9.1 µM. The new compounds, affecting the biofilm formation without any interference on microbial growth, can be considered promising lead compounds for the development of a new class of anti-virulence agents.  相似文献   

9.
This paper describes coatings on wood surfaces made by dipping the wood into solutions of different alkoxysilanes. The silanes used as precursors contain different organic groups [R’Si(OR’’)]. These materials tend to deposit as inorganic–organic polymeric films, where the organic groups (aliphatic hydrocarbons, fluorinated hydrocarbons or aromatic substituents) show hydrophobic properties, which reduce the wettability of the surface. The effects of these treatments on the wood surface were extensively studied using various analytical techniques: scanning electron microscopy with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, water contact angle measurements, and flame resistance tests. The resulting data show that the chemical treatment changes the wood’s surface energy, reducing its wettability and reaction to fire. The main innovative finding of this research is that the coatings obtained from a cheaper precursor have a similar performance to that of the more expensive precursors normally used.  相似文献   

10.
Leptospermum petersonii (family Myrtaceae) is often cultivated for ornamental purposes but also serves as a rich source of bioactive essential oils. While several studies focused on the activities of the essential oils, this study analysed the potential of spent L. petersonii leaves as a natural food preservative. Method: We investigated the in vitro antioxidant and antimicrobial activities of crude L. petersonii extracts against activities of the purified isolated flavonoid, 6-methyltectochrysin, which was characterized using spectroscopic methods. The antioxidant assays followed ORAC, FRAP and TEAC tests. The antimicrobial activities of the extract and purified flavonoid were analysed against six multi-drug resistant microbial strains in broth dilution assays. Result: The results revealed that both the crude extracts and isolated 6-methyltectochrysin exhibited positive radical ion scavenging antioxidant potential, however the crude extract was about 6-fold more potent antioxidant than the purified 6-methyltectochrysin. The crude extract also showed strong antimicrobial activities against Bacillus cereus, and even more potent antimicrobial agent than the reference ampicillin antibiotic against Klebsiella pneumoniae subsp. pneumoniae. A higher resistance was observed for the tested Gram-negative strains than for the Gram-positive ones. 6-methyltectochrysin was generally inactive in the antimicrobial assays. Conclusion: The crude methanolic extract showed significant bioactivity which validates the medicinal relevance of the plant. The observed biological activities, especially against a notorious strain of B. cereus, suggest that L. petersonii could be a promising natural source of food preservatives.  相似文献   

11.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

12.
Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.  相似文献   

13.
This paper reports on deposition of acrylic acid films polymerized by an efficient and cost‐effective technique of dielectric barrier corona discharge at atmospheric pressure. The liquid acrylic acid was vaporized and carried by argon gas into plasma to deposit polyacrylic acid films on polydimethylsiloxane substrate. A nonthermal corona discharge was generated in a pyrex flask using a steel tube‐to‐plate asymmetric electrode configuration. The plasma was excited using an in‐house developed power supply operating with continuous wave signals of 10‐kHz frequency. The emission spectra of plasma species were recorded to know their contribution during deposition process. The deposited surfaces were characterized using contact angle measurements, atomic force microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and film thickness measurements. A maximum film growth rate of 363 nm/min was achieved under optimal condition of discharge. The results suggest that this plasma technique is capable of depositing organic coatings with a high concentration of carboxylic functional groups that could be potentially used for biomedical and microfluidic applications.  相似文献   

14.
Intensive use of antibiotics induced adaptations in bacteria, which developed antibiotic resistance. This is becoming a serious health problem, particularly in the hospital, food industry, or public transport. It is also important to produce surfaces that not only are bactericidal but also prevent adhesion and the consequent biofilm formation, which can make the bacteria resistant to conventional disinfection methods. In this work, a simple and inexpensive method to obtain surfaces TiO2 film coated has been realized to prevent attachment and bacterial proliferation on surfaces. The synthesis and deposition procedure has been finalized to the realization of a uniform coating, whose physical, morphological, and structural features are suitable to inhibit the proliferation of the bacteria and in particular the adhesion of the biofilm. The suitability of the obtained coating has been attested by RBS, X-ray diffraction (XRD), SEM, UV-vis, and Raman techniques. The obtained coatings were homogeneous anatase titania films with an excellent adherence to the substrate and a transmittivity higher than 80% in the visible region. The results show that the TiO2 films considerably reduce microbial contamination on the surface (~98% reduction) feature that makes this coating suitable for antibacterial applications.  相似文献   

15.
Three random copolymers poly(2-methacryloyloxyethyl phosphorylcholine-co-methacrylic acid) (PMAs) were synthesized by free radical polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and methacrylic acid (MA) with different monomer ratios under monomer-starved conditions. The synthesized PMA polyanions were assembled on chitosan (CS) film surfaces via electrostatic interactions. Using layer by layer (LbL) assembly with PMA polyanion and chitosan polycation, PMA/CS multilayer thin films with phosphorylcholine groups on the outer surfaces were fabricated. The modified surfaces were characterized by dynamic contact angle (DCA), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Hemocompatibility of the surfaces was estimated by protein adsorption and platelet adhesion measurements. The results indicated that cell outer membrane mimetic structures were formed on the modified surfaces with PMA as the outermost layer, and the hemocompatibility of the modified surfaces was significantly improved. This facile method of fabricating cell outer membrane mimetic surfaces may have potential applications in the fields of hemocompatible coatings, drug delivery, and tissue engineering.  相似文献   

16.
To evaluate the potential antibiotic resistance capability of cultured human colonic microbiota as a whole system when residual antibiotics enter the human intestine, the combination of viable cell counting and denaturing gradient gel electrophoresis (DGGE) method was used to study effects of the enrofloxacin (ENR) residue on the microbial diversity, antibiotic resistance, and anti-colonization capability in a human chemostat model. The results indicated that the ENR enhanced the microbial antibiotic resistance to the ciprofloxacin (CI), and a dose-dependent effect was observed. When exposed to 1.25 μg/mL ENR, the growth of the tested bacteria (e.g., total aerobic bacteria, total anaerobic bacteria, Lactobacillus, Enterococci, Escherichia coli, Bacteroides fragilis) received little change, while the microbial diversity in this group was totally changed; In 12.5- and 125-μg/mL ENR group, the quantities and microbial diversity received a dramatic change compared to their no drug stage, while the addition of the cultured human colonic microbiota to the probiotic group did enhance the colonization resistance (CR) of the cultured microbiota to Candida albicans SC5314, indicating its potential beneficial effect on human intestinal healthy and anti-infection capability.  相似文献   

17.
Bioinert polyelectrolyte multilayers comprised of poly(acrylic acid) and polyacrylamide were deposited on colloidal particles (1.7 microm in diameter) at low pH conditions by layer-by-layer assembly using hydrogen-bonding interactions. The multilayer films were coated uniformly on the colloidal particles without causing any flocculation of the colloids, and the deposited films were subsequently cross-linked by a single treatment of a carbodiimide aqueous solution. The lightly cross-linked multilayer films show excellent stability at physiological conditions (pH 7.4, phosphate-buffered saline), whereas untreated multilayer films dissolved. The multilayer-coated surfaces, both on flat substrates and on colloidal particles, exhibit excellent resistance toward mammalian cell adhesion. With this new solution-based cross-linking method, bioinert H-bonded multilayer coatings offer potential for biomedical applications.  相似文献   

18.
Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56–1.04 kGy were observed for Gram-positive bacterial isolates.  相似文献   

19.
Alginate, chitosan and gelatin were deposited on the surface of PDL‐LA films via an entrapment method. ATR‐FT‐IR, XPS and contact‐angle analyses revealed the formation of stable thin biomacromolecule layers on the PDL‐LA film, thus enhancing the hydrophilicity of the films. Confocal laser scanning microscopy showed the existence of entrapment areas of approximately 10–20 μm in depth. This simple surface‐treatment method may have the potential for many biomedical applications.  相似文献   

20.
In this research, a two-component sol–gel inorganic–organic hybrid coating was prepared on a cotton fibre surface. An equimolar sol mixture of the precursors 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) was applied to cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and coated cotton fibres were characterised using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight-secondary ion mass spectrometry. The functional properties of the coated cotton fabric samples were investigated using static contact angle measurements with water and n-hexadecane, the ice-releasing test, antibacterial testing against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, thermogravimetric analysis in an air atmosphere, and vertical flammability tests. The results reveal the formation of a nanocomposite two-component inorganic–organic hybrid polymer network that is homogenously distributed over the cotton fibre surface. The presence of the SiP component in the two-component inorganic–organic hybrid coating did not hinder the functional properties imparted by the presence of the SiF component and vice versa, illustrating their compatibility. The cooperative action of the SiF and SiP components in the two-component coating provided the cotton fabric with exceptional multifunctionality, including simultaneous superhydrophobicity and high oleophobicity, passive antibacterial activity, and improved thermo-oxidative stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号