首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, supercritical CO2 power cycles have received a large amount of interest due to their exceptional theoretical conversion efficiency above 50%, which is leading a revolution in power cycle research. Furthermore, this high efficiency can be achieved at a moderate temperature level, thus suiting concentrating solar power (CSP) applications, which are seen as a core business within supercritical technologies. In this context, numerous studies have been published, creating the need for a thorough analysis to identify research areas of interest and the main researchers in the field. In this work, a bibliometric analysis of supercritical CO2 for CSP applications was undertaken considering all indexed publications within the Web of Science between 1990 and 2020. The main researchers and areas of interest were identified through network mapping and text mining techniques, thus providing the reader with an unbiased overview of sCO2 research activities. The results of the review were compared with the most recent research projects and programs on sCO2 for CSP applications. It was found that popular research areas in this topic are related to optimization and thermodynamics analysis, which reflects the significance of power cycle configuration and working conditions. Growing interest in medium temperature applications and the design of sCO2 heat exchangers was also identified through density visualization maps and confirmed by a review of research projects.  相似文献   

2.
A work producing cycle has been developed showing a thermodynamic efficiency considerably higher than that of the Rankine cycle. The new cycle employs a mixture of H2O and NH3 as the working fluid and uses an absorption process similar to that of absorption refrigerators. Its advantage over existing power cycles working with the same mixture (i.e. the Kalina cycle) is simplicity as far as devices, construction, operation and maintenance are concerned. For the detailed calculation of the proposed cycle a method has been developed, which employs analytical functions describing the thermodynamic properties of the NH3/H2O mixture. The proposed cycle has been compared with Rankine cycles working at the same temperature levels. For fixed upper (i.e. superheating) and lower (i.e. condensation) temperatures, the new cycle shows an efficiency 20% higher than that of the Rankine cycle if the boiling temperature is high, while for low boiling temperatures the superiority of the proposed cycle is much more pronounced. A parametric study has also been conducted for the new cycle, wwhich showed, inter alia, that the optimum difference between the mass fractions of the rich and weak solution is about 0.1 kg NH3/kg mixture.  相似文献   

3.
The transition to the use of supercritical carbon dioxide as a working fluid for power generation units will significantly reduce the equipment′s overall dimensions while increasing fuel efficiency and environmental safety. Structural and parametric optimization of S–CO2 nuclear power plants was carried out to ensure the maximum efficiency of electricity production. Based on the results of mathematical modeling, it was found that the transition to a carbon dioxide working fluid for the nuclear power plant with the BREST–OD–300 reactor leads to an increase of efficiency from 39.8 to 43.1%. Nuclear power plant transition from the Rankine water cycle to the carbon dioxide Brayton cycle with recompression is reasonable at a working fluid temperature above 455 °C due to the carbon dioxide cycle′s more effective regeneration system.  相似文献   

4.
In the waste heat recovery of the internal combustion engine (ICE), the transcritical CO2 power cycle still faces the high operation pressure and difficulty in condensation. To overcome these challenges, CO2 is mixed with organic fluids to form zeotropic mixtures. Thus, in this work, five organic fluids, namely R290, R600a, R600, R601a, and R601, are mixed with CO2. Mixture performance in the waste heat recovery of ICE is evaluated, based on two transcritical power cycles, namely the recuperative cycle and split cycle. The results show that the split cycle always has better performance than the recuperative cycle. Under design conditions, CO2/R290(0.3/0.7) has the best performance in the split cycle. The corresponding net work and cycle efficiency are respectively 21.05 kW and 20.44%. Furthermore, effects of key parameters such as turbine inlet temperature, turbine inlet pressure, and split ratio on the cycle performance are studied. With the increase of turbine inlet temperature, the net works of the recuperative cycle and split cycle firstly increase and then decrease. There exist peak values of net work in both cycles. Meanwhile, the net work of the split cycle firstly increases and then decreases with the increase of the split ratio. Thereafter, with the target of maximizing net work, these key parameters are optimized at different mass fractions of CO2. The optimization results show that CO2/R600 obtains the highest net work of 27.43 kW at the CO2 mass fraction 0.9 in the split cycle.  相似文献   

5.
The thermal efficiency of a cycle consisting of a combination of a Rankine power cycle and an absorption cycle has been examined with respect to upper cycle temperature and the solution used.Freon 22-DME. TEG and ammonia-NaSCN have been selected for comparison. An improvement of the Rankine cycle is expected. This improvement is higher for substances having a high latent heat. Although there is a strong dependence on the substance used in Rankine cycles, no considerable effect seems to exist in the combined cycle.  相似文献   

6.
This paper presents a system of regenerative heating incorporating an absorption heat pump in a Rankine steam cycle which can improve cycle efficiency. A simulation has been performed to estimate the Rankine cycle efficiency in the proposed Absorption Heat Pump Regeneration (AHPRG) heating system using the working pair R213-DMETEG. The results show that the cycle efficiency can be improved considerably without reducing the work output by the incorporation of AHPRG for low-temperature heating of steam condensate. Further, the temperature of the heat-pump evaporator which absorbs the heat rejected at the steam condenser plays a predominant role in the cycle efficiency.  相似文献   

7.
Theoretical Rankine power cycle efficiencies νR and the (PR) have been presented for Rankine power cycles operating on R142b. These values are listed in tabular form for temperature drops of 5–75°C and for boiler temperatures 25–125°C in 5°C increments. A composite graph showing the relationship between νR, TBO, (PR) and temperature drop (TBOTCO) illustrates the feasible operating range for R142b power cycle systems. The derived thermodynamic data can be used for the rapid preliminary design of the Rankine power cycle systems operating on R142b.  相似文献   

8.
Theoretical Rankine power cycle efficiencies νR and the pressure (PR) have been presented for Rankine power cycles operating on R502. These values are listed in tabular form for temperature drops of 5–75°C and for boiler temperatures 35–80°C in 5°C increments. A composite graph showing the relationship between νR, TBO, (PR) and temperature drop (TBO - TCO illustrates the feasible operating range for R502 power cycle systems. The derived thermodynamic data can be used for the rapid preliminary design of Rankine power cycle systems operating on R502.  相似文献   

9.
Ignition Delay Time (IDT) plays a significant role in combustion process of advanced power cycles such as direct-fired supercritical carbon dioxide (sCO2) cycle. In this cycle, fuel and oxidizer are heavily diluted with carbon dioxide (CO2) and autoignite at a combustor inlet pressure range of 10–30 MPa and a temperature range of 900–1500 K. A fuel candidate for sCO2 power cycle applications is syngas (H2/CO mixture); however, its ignition properties at these conditions are not studied. Moreover, the existing chemical kinetics models have not been evaluated for H2/CO mixtures applications relevant to elevated pressure conditions and under large dilution levels of CO2. Therefore, two tasks are performed in this study. First, IDTs of a H2/CO=95:5 mixture at stoichiometric and rich (Φ=2) conditions are measured in a high-pressure shock tube under 95.5% CO2 dilution level and at 10 MPa and 20 MPa for a temperature range of 1161–1365 K. For the experimental conditions considered in this work, Aramco 2.0, FFCM-1, HP-Mech and USC Mech II kinetic models are capable of capturing IDT data. Second, similar experiments are conducted by replacing the CO2 dilute gas with Argon (Ar) to understand the chemical effect of CO2 on IDT globally. Sensitivity analysis results reveal that for both diluents, reaction H + O2(+M)=HO2(+M) is the most important reaction in controlling ignition. Further, a rate of production analysis shows that CO2 has a competing effect on OH radical production. On one hand, CO2 accelerates the consumption of H radicals through H + O2+CO2→HO2+CO2 therefore hindering HO2+HOH+OH reaction for OH production. On the other hand, CO2 is shown to enhance OH production through H2O2+M=OH+OH+M. These kinetic effects from CO2 cancel out, therefore CO2 does not significantly alter the IDT globally when compared to the Ar bath case. This is confirmed by both experimental results and simulation.  相似文献   

10.
This paper discusses a configuration of a Rankine cycle engine-driven heat pump, and includes a theoretical investigation of its performance characteristics. The system employs a Rankine power cycle, using R-113 as the working fluid, coupled to a vapour compression cycle heat pump using R-22. A novel feature of the concept is the use of hydraulically connected rolling diaphragm piston-cylinder devices as motor, compressor and pump.Heating and cooling COPs of 2.01 and 1.06 respectively are predicted, making the system potentially attractive where both heating and cooling are required.  相似文献   

11.
燃气发电是我国城市供电的主要形式之一,针对LNG接收站一体的电厂发电模式进行研究,提出一种新型燃气-蒸汽联合循环热电联供系统,利用超临界CO2布雷顿循环结合有机朗肯循环(ORC)辅助发电,将LNG作为冷源,对烟气余热进行三级利用.通过构建热力学和经济模型,以Aspen Plus软件模拟值为基础,结果表明:在消耗燃料1....  相似文献   

12.
This article presents a method for improving the gas turbine's performance through an efficient utilization of the waste heat in a distillation system with a special arrangement. This consists of two trains of VTE/MEB connected to increase the fresh water produced. Exhaust gases from the gas turbine are used in a multi-temperature level heat recovery system with five feed heaters, and gases are released to ambient at 130°C. Distillation top train has nine effects and evaporation range from 130 to 82°C while the bottom train has six effects with evaporation range from 76 to 46°C and is supplied with the steam leaves the last effect in the top train.Thermal analysis using a 32.67 MW gas turbine showed that the present arrangement can produce 3.2 million gallons per day (mgd) of fresh water with more than 4 g/kWh at a performance ratio (PR) of 8.8. This is 34% more than that produced in an existing gas-turbine distillation combination and 14% more than that expected from a reverse osmosis plant driven by a bottoming Rankine power cycle.  相似文献   

13.
Theoretical Rankine power cycle efficiencies νR and the pressure (PR) have been presented for rankine power cycles operating on R22. These values are listed in tabular form for temperature drops of 5–75°C and for boiler temperatures 40–85°C in 5°C increments. Composite graph showing the relationship between νR, TBO, (PR) and temperature drop (TBO - TCO) illustrates the feasible operating range for R22 power cycle systems. The derived thermodynamic data can be used for the rapid preliminary design of the Rankine power cycle systems operating on R22.  相似文献   

14.
Combined gas/steam turbine cycle plants have been proposed for cogeneration of electricity and process steam. Examples are combined-cycle power plants coupled with sea-water desalination, district heating plants, chemical industries, etc. In combined heat and power plants, the gas turbine exhaust heat is utilized through the use of heat recovery steam generators (HRSG's). As a result, these waste heat generators (boilers), whether fired or unfired, control the performance of the combined plant lower side (bottoming cycle). Moreover, any changes made in the HRSG operating parameters (i.e. the pinch point, approach temperature, first and second stage pressures, and mass ratios) can greatly affect the HRSG performance and will eventually affect the overall combined plant performance. This paper presents a method to predict the performance of the heat recovery steam generators (HRSG)/steam bottoming cycle combined with sea-water desalination plant at various steam and exhaust gas conditions.  相似文献   

15.
A closed-cycle MHD generator topping a steam bottoming plant is analyzed. The combined power plant involves three working fluids in three loops. The MHD loop is investigated more thoroughly since it is the least conventional of the three. Equations are developed to determine the geometric and thermodynamic variables throughout the MHD channel for inlet conditions of mass flow, temperature, pressure, and velocity. Limiting design parameters are output power, channel length, channel aspect ratio, Hall parameter, and interaction parameter. The basic closed-cycle MHD loop working fluid can consist of either argon or helium seeded with cesium. Both non-equilibrium ionization produced by the elevation of the electron temperature from joule heating of the plasma and thermal ionization are considered. Equations used to calculate the electrical conductivity and the elevation of electron temperatures are derived. These equations are coupled with the one-dimentional differential equations applicable to an MHD generator. The chief interest is in determining those MHD channel conditions which result in the most thermodynamically efficient MHD-steam plantcombination. Thus an overall heat balance forthe system is required. Equations are developed to calculate the gas properties at the various stations of the closed loop and to determine the overall efficiency of the cycle. A rather flexible computer program written in Fortran is used to solve the MHD generator equations and to make the overall heat balance. Some typical results presented demonstrate the feasibility and adaptability of the analysis for optimizing the thermal efficiency and the sensitivity of thermal efficiency to various parameters.  相似文献   

16.
Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed.  相似文献   

17.
This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the same as for standard operation in uranium cycle. Two modes of operations are discussed in the paper: mode of preliminary accumulation of 233U and mode of operation in self-sufficient cycle. For the mode of accumulation of 233U it was assumed for calculations that plutonium can be used as additional fissile material to provide neutrons for 233U production. Plutonium was placed in fuel channels, while 232Th was located in target channels. Maximum content of 233U in target channels was estimated to be ∼13 kg/t of ThO2. This was achieved by irradiation for six years. The start of the reactor operation in the self-sufficient mode requires 233U content to be not less than 12 kg/t. For the mode of operation in self-sufficient cycle, it was assumed that all channels were loaded with identical fuel assemblies containing ThO2 and certain amount of 233U. It is shown that nonuniform distribution of 233U in fuel assembly is preferable.   相似文献   

18.
混合工质中低温热力循环特性研究   总被引:7,自引:2,他引:5  
本文从热力学第二定律角度出发,对氨水混合工质中低温动力循环进行了分析。通过与简单蒸汽循环的比较,揭示了混合工质热力循环的特性及本质,指出工质蒸发换热过程的匹配及冷凝过程是混合工质循环高效的关键。为了改善冷凝过程,可采用分馏冷凝系统取代传统的冷凝方式。同时,本文还探讨了一些基本规律,明确了余热回收过程中中低温段换热匹配的重要性  相似文献   

19.
Here are reported for the first time electrochemical data on all-solid-state lithium microbatteries using crystalline sputtered V2O5 thin films as cathode materials and LiPON as solid electrolyte. The stable specific capacity of 30 µAh/cm2 found with a 2.4 µm thick film competes very well with the best values obtained for solid state microbatteries using amorphous films. With the challenge of decreasing the temperature of heat treatment for sputtered LiCoO2 thin films, we show that a temperature of 500 °C combined with an optimized bias sputtering (-50 V) allows to get highly crystalline deposits, to minimize the presence of Co3O4 and to suppress any trace of the cubic phase. At the same time the theoretical specific capacity is reached in the 4.2 V-3 V range and a good cycling behaviour is achieved with a high capacity of 50 µAh/cm2/µm after 140 cycles at 10 µA.cm2.  相似文献   

20.
The need for more efficient power cycles has attracted interest in super-critical CO2 (sCO2) cycles. However, the effects of high CO2 dilution on auto-ignition at extremely high pressures has not been studied in depth. As part of the effort to understand oxy-fuel combustion with massive CO2 dilution, we have measured shock tube ignition delay times (IDT) for methane/O2/CO2 mixtures and hydrogen/O2/CO2 mixtures using sidewall pressure and OH* emission near 306?nm. Ignition delay time was measured in two different facilities behind reflected shock waves over a range of temperatures, 1045–1578?K, in different pressures and mixture regimes, i.e., CH4/O2/CO2 mixtures at 27–286 atm and H2/O2/CO2 mixtures at 37–311 atm. The measured data were compared with the predictions of two recent kinetics models. Fair agreement was found between model and experiment over most of the operating conditions studied. For those conditions where kinetic models fail, the current ignition delay time measurements provide useful target data for development and validation of the mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号