首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer is one of the most lethal diseases in the world, and the development and improvement of treatments used in cancer therapies are extremely important for a better quality of life for patients. In view of the current problems in drug administration such as low solubility and adverse effects, the activity of a solid lipid nanoparticle containing docetaxel (SLN-DTX), a drug already used in conventional therapies, was evaluated in a cell line (MDA-MB-231) of one of the most aggressive types of breast cancer with the worst prognosis, triple-negative breast cancer. Viability tests indicated that SLN-DTX has a greater dependence on the treatment dose when compared to the free drug, which indicates a more controlled release of the drug, and both reduced viability by around 50% at a concentration of 1 µg/mL after 72 h. Transmission electron microscopy (TEM) and confocal and light microscopy analyses indicated that after treatment the cells enter a mitotic catastrophe, characteristic of antimitotic drugs that usually make cells progress to death or senescence. Cells treated with both DTX and SLN-DTX showed significant inhibition of mobility, 73.6% and 66.5% when treated with SLN-DTX and DTX, respectively, compared to the 11.4% of the control after 72 h, characteristics that are very relevant in tumor development and progression. SLN-DTX demonstrated its great potential as a nanocarrier by maintaining and improving the drug’s action in the MDA-MB-231 cell line.  相似文献   

2.
Obese subjects have an increased risk of developing triple-negative breast cancer (TNBC), in part associated with the chronic low-grade inflammation state. On the other hand, epidemiological data indicates that increased consumption of polyphenol-rich fruits and vegetables plays a key role in reducing incidence of some cancer types. Here, we tested whether green tea-derived epigallocatechin-3-gallate (EGCG) could alter adipose-derived mesenchymal stem cell differentiation into adipocytes, and how this impacts the secretome profile and paracrine regulation of the TNBC invasive phenotype. Here, cell differentiation was performed and conditioned media (CM) from preadipocytes and mature adipocytes harvested. Human TNBC-derived MDA-MB-231 real-time cell migration was performed using the exCELLigence system. Differential gene arrays and RT-qPCR were used to assess gene expression levels. Western blotting was used to assess protein expression and phosphorylation status levels. In vitro vasculogenic mimicry (VM) was assessed with Matrigel. EGCG was found to inhibit the induction of key adipogenic biomarkers, including lipoprotein lipase, adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. Increased TNBC-derived MDA-MB-231 cell chemotaxis and vasculogenic mimicry were observed in response to mature adipocytes secretome, and this was correlated with increased STAT3 phosphorylation status. This invasive phenotype was prevented by EGCG, the JAK/STAT inhibitors Tofacitinib and AG490, as well as upon STAT3 gene silencing. In conclusion, dietary catechin-mediated interventions could, in part through the inhibition of adipogenesis and modulation of adipocytes secretome profile, prevent the onset of an obesogenic environment that favors TNBC development.  相似文献   

3.
Metastasis is an important cause of cancer-related death. Previous studies in our laboratory found that pregnane alkaloids from Pachysandra terminalis had antimetastatic activity against breast cancer cells. In the current study, we demonstrated that treatment with one of the alkaloid derivatives, (Z)-3β-ethylamino-pregn-17(20)-en (1), led to the downregulation of the HIF-1α/VEGF/VEGFR2 pathway, suppressed the phosphorylation of downstream molecules Akt, mTOR, FAK, and inhibited breast cancer metastasis and angiogenesis both in vitro and in vivo. Furthermore, the antimetastasis and antiangiogenesis effects of 1 treatment (40 mg/kg) were more effective than that of Sorafenib (50 mg/kg). Surface plasmon resonance (SPR) analysis was performed and the result suggested that HSP90α was a direct target of 1. Taken together, our results suggested that compound 1 might represent a candidate antitumor agent for metastatic breast cancer.  相似文献   

4.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.  相似文献   

5.
In this study, we aimed to evaluate the anticancer effect of benzimidazole derivatives on triple-negative breast cancer (TNBC) and investigate its underlying mechanism of action. Several types of cancer and normal breast cells including MDA-MB-231, radiotherapy-resistant (RT-R) MDA-MB-231, and allograft mice were treated with six benzimidazole derivatives including mebendazole (MBZ). Cells were analyzed for viability, colony formation, scratch wound healing, Matrigel invasion, cell cycle, tubulin polymerization, and protein expression by using Western blotting. In mice, liver and kidney toxicity, changes in body weight and tumor volume, and incidence of lung metastasis were analyzed. Our study showed that MBZ significantly induced DNA damage, cell cycle arrest, and downregulation of cancer stem cell markers CD44 and OCT3/4, and cancer progression-related ESM-1 protein expression in TNBC and RT-R-TNBC cells. In conclusion, MBZ has the potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.  相似文献   

6.
Lysine‐specific demethylase 5A (KDM5A) has recently become a promising target for epigenetic therapy. In this study, we designed and synthesized metal complexes bearing ligands with reported demethylase and p27 modulating activities. The Rh(III) complex 1 was identified as a direct, selective and potent inhibitor of KDM5A that directly abrogate KDM5A demethylase activity via antagonizing the KDM5A‐tri‐/di‐methylated histone 3 protein–protein interaction (PPI) in vitro and in cellulo. Complex 1 induced accumulation of H3K4me3 and H3K4me2 levels in cells, causing growth arrest at G1 phase in the triple‐negative breast cancer (TNBC) cell lines, MDA‐MB‐231 and 4T1. Finally, 1 exhibited potent anti‐tumor activity against TNBC xenografts in an in vivo mouse model, presumably via targeting of KDM5A and hence upregulating p27. Moreover, complex 1 was less toxic compared with two clinical drugs, cisplatin and doxorubicin. To our knowledge, complex 1 is the first metal‐based KDM5A inhibitor reported in the literature. We anticipate that complex 1 may be used as a novel scaffold for the further development of more potent epigenetic agents against cancers, including TNBC.  相似文献   

7.
8.
Euterpe oleracea Mart. (açai) is a native palm from the Amazon region. There are various chemical constituents of açai with bioactive properties. This study aimed to evaluate the chemical composition and cytotoxic effects of açai seed extract on breast cancer cell line (MCF-7). Global Natural Products Social Molecular Networking (GNPS) was applied to identify chemical compounds present in açai seed extract. LC-MS/MS and molecular networking were employed to detect the phenolic compounds of açai. The antioxidant activity of açai seed extract was measured by DPPH assay. MCF-7 breast cancer cell line viability was evaluated by MTT assay. Cell death was evaluated by flow cytometry and time-lapse microscopy. Autophagy was evaluated by orange acridin immunofluorescence assay. Reactive oxygen species (ROS) production was evaluated by DAF assay. From the molecular networking, fifteen compounds were identified, mainly phenolic compounds. The açai seed extract showed cytotoxic effects against MCF-7, induced morphologic changes in the cell line by autophagy and increased the ROS production pathway. The present study suggests that açai seed extract has a high cytotoxic capacity and may induce autophagy by increasing ROS production in breast cancer. Apart from its antioxidant activity, flavonoids with high radical scavenging activity present in açai also generated NO (nitric oxide), contributing to its cytotoxic effect and autophagy induction.  相似文献   

9.
10.
The most prevalent lung cancer is non-small cell lung cancer (NSCLC). This lung cancer type often develops other organ-specific metastases that are critical burdens in the treatment process. Orchid species in the genus Vanda have shown their potential in folkloric medication of diverse diseases but not all its species have been investigated, and little is known about their anticancer activities against NSCLC. Here, we firstly profiled the specialized metabolites of Vanda bensonii and examined their capability to inhibit growth and metastasis of NSCLC using NCI-H460 cells as a study model. Four phytochemicals, including phloretic acid methyl ester (1), cymbinodin-A (2), ephemeranthoquinone B (3), and protocatechuic acid (4), were isolated from the whole plant methanolic extract of V. bensonii. The most distinguished cytotoxic effect on NCI-H460 cells was observed in the treatments with crude methanolic extract and compound 2 with the half maximal inhibitory concentrations of 40.39 μg mL−1 and 50.82 μM, respectively. At non-cytotoxic doses (10 μg mL−1 or 10 μM), only compound 1 could significantly limit NCI-H460 cell proliferation when treated for 48 h, while others excluding compound 4 showed significant reduction in cell proliferation after treating for 72 h. Compound 1 also significantly decreased the migration rate of NCI-H460 cells examined through a wound-healing assay. Additionally, the crude extract and compound 1 strongly affected survival and growth of NCI-H460 cells under anchorage-independent conditions. Our findings proved that natural products from V. bensonii could be promising candidates for the future pharmacotherapy of NSCLC.  相似文献   

11.
本研究探讨磁共振弥散加权成像(MR-DWI)评估乳腺癌患者腋窝淋巴结转移的价值。回顾性选取乳腺癌患者68例(观察组),同时选取乳腺良性病变患者60例作为对照组,比较两组MR-DWI差异。观察组弥漫高信号、混杂高信号比例明显高于对照组(P<0.05);观察组病灶ADC值明显低于对照组(P<0.05);观察组Ⅲ期病灶ADC值明显低于Ⅰ~Ⅱ期(P<0.05);观察组腋窝淋巴结转移ADC值明显低于无淋巴结转移(P<0.05);弥漫高信号和其他信号组织ADC值比较差异无统计学意义(P>0.05);ADC值预测腋窝淋巴结转移的ROC曲线下面积为0.752,P<0.05。MR-DWI在乳腺癌腋窝淋巴结转移诊断应用价值较好,值得临床使用。  相似文献   

12.
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7–9 expression and downregulation of Bcl-2 and full-length caspase-7–9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.  相似文献   

13.
64CuCl2 is an economic radiotracer for oncologic PET investigations. In the present study, we characterized the uptake of 64CuCl2 in vivo by µPET/CT in an allograft 4T1-related mouse model (BALB/c) of advanced breast cancer. 18F-FDG was used as a comparator. Twenty-two animals were imaged 7–9 days following 4T1-cell implantation inside mammary glands. Dynamic 64CuCl2 µPET/CT acquisition or iterative static images up to 8 h p.i. were performed. Animal biodistribution and tumor uptake were first evaluated in vivo by µPET analysis and then assessed on tissue specimens. Concerning 18F-FDG µPET, a static acquisition was performed at 15 min and 60 min p.i. Tumor 64CuCl2 accumulation increased from 5 min to 4 h p.i., reaching a maximum value of 5.0 ± 0.20 %ID/g. Liver, brain, and muscle 64CuCl2 accumulation was stable over time. The tumor-to-muscle ratio remained stable from 1 to 8 h p.i., ranging from 3.0 to 3.7. Ex vivo data were consistent with in vivo estimations. The 18F-FDG tumor accumulation was 8.82 ± 1.03 %ID/g, and the tumor-to-muscle ratio was 4.54 ± 1.11. 64CuCl2 PET/CT provides good characterization of the 4T1-related breast cancer model and allows for exploration of non-glycolytic cellular pathways potentially of interest for theragnostic strategies.  相似文献   

14.
DBAH-Tf靶向药物及其对乳腺癌细胞的杀伤作用分析   总被引:2,自引:0,他引:2  
以转铁蛋白(Tf)为靶向载体,与双氢青蒿素(DHA)化学偶联制备一种新的双氢青蒿素衍生物-转铁蛋白靶向药物.以DHA为原料先合成了12β-对甲酰肼苯基双氢青蒿素(DBAH),并采用紫外、红外、核磁共振及电化学等手段对目标产物的结构进行了表征.利用高碘酸钠氧化Tf的C端的N-糖链上的邻位羟基,其氧化产物和DBAH通过希夫碱偶联合成了DBAH-Tf靶向药物,采用紫外吸收光谱法和电化学方法进行表征.四甲基氮唑蓝法(MTT)分析了DBAH-Tf及DHA对人乳腺癌细胞(MCF-7)和正常乳腺细胞的体外杀伤作用, 结果表明,DBAH-Tf对MCF-7的杀伤作用是正常乳腺癌细胞的286倍,体现出良好的靶向性.  相似文献   

15.
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin‐β1, and effective lowering of integrin‐β1 levels on a breast cancer model (MDA‐MB‐231 cells) is achieved by delivering a dicer‐substrate short interfering RNA (siRNA) targeting integrin‐β1 with lipid‐modified low molecular weight polyethylenimine polymers. Reduction of integrin‐β1 levels leads to reduced adhesion of MDA‐MB‐231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin‐β1 silencing in “scratch” and “transwell” migration assays. These results highlight the importance of integrin‐β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.

  相似文献   


16.
A number of uracil amides cleave poly (ADP-ribose) polymerase and therefore novel thiouracil amide compounds were synthesized and screened for the loss of cell viability in a human-estrogen-receptor-positive breast cancer cell line. The synthesized compounds exhibited moderate to significant efficacy against human breast cancer cells, where the compound 5e IC50 value was found to be 18 μM. Thouracil amide compounds 5a and 5e inhibited the catalytical activity of PARP1, enhanced cleavage of PARP1, enhanced phosphorylation of H2AX, and increased CASPASE 3/7 activity. Finally, in silico analysis demonstrated that compound 5e interacted with PARP1. Hence, specific thiouracil amides may serve as new drug-seeds for the development of PARP inhibitors for use in oncology.  相似文献   

17.
18.
Breast cancer (BC) is one of the most common malignancies in women and often accompanied by inflammatory processes. Cyclooxygenase-2 (COX-2) plays a vital role in the progression of BC, correlating with the expression of programmed death-ligand 1 (PD-L1). Overexpression of PD-L1 contributes to the immune escape of cancer cells, and its blockade would stimulate anticancer immunity. Two multispecific platinum(IV) complexes DNP and NP were prepared using non-steroidal antiinflammatory drug naproxen (NPX) as axial ligand(s) to inhibit the BC cells. DNP exhibited high cytotoxicity and antiinflammatory properties superior over NP, cisplatin and NPX; moreover, it displayed potent antitumor activity and almost no general toxicity in mice bearing triple-negative breast cancer (TNBC). Mechanistic studies revealed that DNP could downregulate the expression of COX-2 and PD-L1 in vitro and vivo, inhibit the secretion of prostaglandin, reduce the expression of BC-associated protein BRD4 and phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2), and block the oncogene c-Myc in BC cells. These findings demonstrate that DNP is capable of intervening in inflammatory, immune, and metastatic processes of BC, thus presenting a new mechanism of action for anticancer platinum(IV) complexes. The multispecificity offers a special superiority for DNP to treat TNBC by combining chemotherapy and immunotherapy in one molecule.  相似文献   

19.
Prostate cancer (PCa) is the most common malignancy to endanger the health of male genitourinary system. Clinically, paclitaxel (PTX) (C47H51NO14), a diterpene alkaloid, is commonly used as an effective natural antineoplastic drug during the treatment of PCa. However, the mechanism and pathway involved in the function of PTX are poorly understood. In the current study, we employed the CCK-8 assay, revealing that PTX can inhibit the survival and induce the apoptosis of PC3M cells (a human prostate cancer cell line) in a concentration-dependent manner. Reactive oxygen species (ROS), as a metabolic intermediate produced by the mitochondrial respiratory chain, are highly accumulated under the PTX treatment, which results in a sharp decrease of the mitochondrial membrane potential in PC3M cells. Additionally, the migration and invasion of PC3M cells are weakened due to PTX treatment. Further analysis reveals that N-acetylcysteine (NAC), which functions as an antioxidant, not only rescues the decreased mitochondrial membrane potential induced by the abnormal ROS level, but also restores the migration and invasion of PC3M cells. In a subsequent exploration of the detailed mechanism, we found that hypoxia-inducible factor (HIF)-1α works as a downstream gene that can respond to the increased ROS in PC3M cells. Under PTX treatment, the expression levels of HIF-1α mRNA and protein are significantly increased, which stimulate the activation of JNK/caspase-3 signaling and promote the apoptosis of PC3M cells. In summary, we demonstrate that PTX regulates the expression of HIF-1α through increased ROS accumulation, thereby promoting the activation of JNK/caspase-3 pathway to induce the apoptosis of PCa cells. This study provides new insights into the mechanism of antineoplastic action of taxanes and unveils the clinical benefit of the ROS-HIF-1α signaling pathway, which may offer a potential therapeutic target to prevent the development of PCa.  相似文献   

20.
Mahanimbine (MN) is a carbazole alkaloid present in the leaves of Murraya koenigii, which is an integral part of medicinal and culinary practices in Asia. In the present study, the anticancer, apoptotic and anti-invasive potential of MN has been delineated in vitro. Apoptosis cells determination was carried out utilizing the acridine orange/propidium iodide double fluorescence test. During treatment, caspase-3/7,-8, and-9 enzymes and mitochondrial membrane potentials (Δψm) were evaluated. Anti-invasive properties were tested utilizing a wound-healing scratch test. Protein and gene expression studies were used to measure Bax, Bcl2, MMP-2, and -9 levels. The results show that MN could induce apoptosis in MCF-7 cells at 14 µM concentration IC50. MN-induced mitochondria-mediated apoptosis, with loss in Δψm, regulation of Bcl2/Bax, and accumulation of ROS (p ≤ 0.05). Caspase-3/7 and -9 enzyme activity were detected in MCF-7 cells after 24 and 48 h of treatment with MN. The anti-invasive property of MN was shown by inhibition of wound healing at the dose-dependent level and significantly suppressed mRNA and protein expression on MMP-2 and -9 in MCF-7 cells treated with a sub-cytotoxic dose of MN. The overall results indicate MN is a potential therapeutic compound against breast cancer as an apoptosis inducer and anti-invasive agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号