首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Methoxy poly(ethylene glycol)-grafted-chitosan (mPEG-g-CS) conjugates were synthesized by formaldehyde linking method and characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR). The degree of substitution (DS) of methoxy poly (ethylene glycol) (mPEG) in the mPEG-g-CS molecules determined by 1H-NMR ranged from 19% to 42%. The critical aggregation concentration (CAC) was determined by fluorescence spectroscopy using pyrene as fluorescence probe and its value was 0.07 mg/mL in water. mPEG-g-CS formed monodisperse self-aggregated nanoparticles with a roughly spherical shape and a mean diameter of 261.9 nm were prepared by the dialysis method. mPEG-g-CS self-aggregated nanoparticles were used as carriers of poorly water-soluble anticancer drug methotrexate (MTX). MTX was physically entrapped inside mPEG-g-CS self-aggregated nanoparticles by dialysis method and the characteristics of MTX-loaded mPEG-g-CS self-aggregated nanoparticles were analyzed using dynamic laser light scattering (DLLS), transmission electron microscopy (TEM). Moreover, in vitro release behavior of MTX was also investigated and the results showed that MTX was continuously released more than 50% in 48 h.  相似文献   

3.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

4.
Graft copolymers of poly(ethylene glycol) (PEG) on a chitosan backbone (PEG-g-chitosan) have been synthesized and their aqueous solution properties were investigated. At pH 6.5 the graft copolymers are 100% soluble, while chitosan phase separates from solution at those conditions. These interesting graft copolymers may be especially suitable as carriers for delivery of anionic drugs, such as proteins, glycosaminoglycans, and DNA plasmids or oligonucleotides.  相似文献   

5.
叶酸和聚乙二醇接枝作基因载体用壳聚糖的合成与表征   总被引:3,自引:0,他引:3  
本研究将叶酸和聚乙二醇接枝到四种不同分子量的壳聚糖氨基侧链上,以改善壳聚糖的靶向性和水溶性作基因载体。用FTIE、1HNMR、UV-Vis、DSC和TEM对产物进行了表征,结果表明,叶酸和聚乙二醇被成功地接枝到壳聚糖上,所制得的载体有望作为潜在的肿瘤细胞靶向基因载体。  相似文献   

6.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a novel chitosan-g-(-O-methyl poly (ethylene glycol))-g-(-N-Tat peptide) (CS-mPEG-Tat) copolymer was synthesized. The synthesized intermediates and final products were characterized and confirmed by Fourier transform infrared spectrum, 1H nuclear magnetic resonance spectrum, and X-ray diffraction, respectively. The particle sizes, size distributions, and zeta potentials can also be determined by dynamic light scattering. Agarose gel electrophoresis study showed effective DNA-binding ability of CS-mPEG-Tat. In vitro cytotoxicity assay indicated that CS-mPEG-Tat copolymers were low toxic and cell compatible as the polymer concentration was smaller than 5 mg/ml. This work provides a facile approach to prepare biocompatible PEG-peptide-chitosan copolymer nanoparticles with controllable performances. In conclusion, the obtained CS-mPEG-Tat copolymer might be attractive cationic polymers for nonviral gene therapy.  相似文献   

8.
The effects of fetal bovine serum (FBS) on carboxyfluorescein (CF) leakage from poly(ethylene glycol)-grafted liposomes (PEG-liposomes) were investigated. PEG-liposomes were prepared from dipalmitoylphosphatidylcholine (DPPC) and distearoyl-N-monomethoxy poly(ethylene glycol)-succinyl-phosphatidylethanolamines (DSPE-PEG) having PEG molecular weights of 1000, 2000, 3000 and 5000. The presence of FBS dramatically increased CF leakage from liposomes near the gel-liquid crystalline phase transition temperature, but had little effect at lower and higher temperatures. The CF leakage from PEG-liposomes whose molecular weight in PEG units was above 2000 was suppressed compared with that of liposomes without PEG. And, there was hardly any difference in the effect of the PEG molecular weight of the PEG-lipids on CF leakage from PEG-liposomes with FBS when PEG-lipids with a molecular weight in PEG units above 2000 were used. On the other hand, the leakage of CF from liposomes containing 0.145 mol fractions of DSPE-PEG1000 was larger than that of liposomes without PEG. Furthermore, the effects of FBS on the cooperative units of lipid molecules during the gel-liquid crystalline phase transition of liposomes were examined. However, the cooperative units of liposomes with FBS had little change compared with that of liposomes without FBS.  相似文献   

9.
4-amino-2-phenyl, 6(p-fluor-phenyl)-5-carbonitrile-pyrimidine (APCP) is a new derivative of pyrimidine with low solubility in water and anti-inflammatory properties. We compared the interfacial behaviors of spread films of poly(ethylene glycol)-grafted phospholipid (DSPE-PEG2000), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and APCP and a mixture of these molecules. The surface pressure–area (Π–A) isotherm showed that APCP and DSPE-PEG2000 molecules were stable at the air/water interface and could be evenly inserted into a DPPC floating monolayer. The introduction of APCP into the DPPC/(DSPE-PEG2000) binary monolayer generally causes an overall increase in surface potential. Analyses of distance variation between the grafted sites are associated with a change of mushroom to brush conformation and this behavior is observed for the DPPC/(DSPE-PEG2000) and DPPC/(DSPE-PEG2000)/APCP monolayers. Langmuir–Blodgett (LB) films of molecules of biological interest were transferred onto mica in order to investigate their interaction. AFM images do not show any regular shape or size and are randomly distributed.  相似文献   

10.
The known grafting procedures of colloidal silica particles with poly(ethylene glycol) (PEG) lead to grafting layers that detach from the silica surface and dissolve in water within a few days. We present a new grafting procedure of PEG onto silica with a significant improvement of the stability of the grafting layers in aqueous solvents. Moreover, the procedure avoids any dry states or other circumstances leading to strong aggregation of the particles. To achieve the improved water stability, St?ber silica particles are first pre-coated with a silane coupling agent (3-aminopropyl)triethoxysilane (APS) to incorporate active amine groups. The water solubility of the pre-coating layer was minimized using a combination of APS with bis-(trimethoxysilylpropyl)amine (BTMOSPA) or bis-(triethoxysilyl)ethane (BTEOSE). These pre-coated particles were then reacted with N-succinimidyl ester of mono-methoxy poly(ethylene glycol) carboxylic acid to form PEG-grafted silica particles. The particles form stable dispersions in aqueous solutions as well as several organic solvents.  相似文献   

11.
The in vitro uptake of core-shell nanoparticles encapsulated in a bio-macromolecular nanoshell assembled from multilayered polyelectrolytes was studied. Sulfate modified fluorescent polystyrene nanobeads (diameter 200 nm) were used as a solid core upon which charged multilayers of poly-l-lysine, chitosan, and heparin sulfate are electrostatically deposited utilizing a layer-by-layer (LbL) self-assembly process. The nanoshell composed of the multilayered polyelectrolytes was modified with poly(ethylene glycol) (PEG) of varying molecular weights (either MW 2000, 5000, or 20 000 Da) to form a hydrophilic and long-circulating nanoparticle. The assembly of the nanoshell was confirmed by zeta potential, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The reversal in charge upon the deposition of alternating polyelectrolytes was observed by zeta potential measurements. The nanometer thickness of the nanoshell was confirmed by TEM. The presence of the (C-C-O)(n)() backbone in PEG at the surface of the nanoshell was confirmed by the increase in (C-O,N) peak area concentrations compared to (C-C) peak area, and these results were gathered from XPS. In vitro studies between suspension macrophages and core-shell nanoparticles were performed to determine how the hydrophilicity and the charge on the nanoshell can promote or reduce uptake. Results showed that after 24 h uptake was decreased 3-fold when PEGs of 2000 and 20 000 Da were chemisorbed to the nanoshell, as opposed to a nanoshell with either a positive or highly negative charge. Confocal microscopy aided in verifying that core-shell nanoparticles were internalized within the cell cytoplasm and were not attached to the cell surface. Protein adhesion studies with bovine serum albumin were performed to determine the relationship between surface charge and opsonization of core-shell nanoparticles. It was found that a hydrophilic surface with a low negative charge reduced protein adsorption and uptake. The in vitro uptake of macrophages and protein adsorption onto core-shell nanoparticles formed using layer-by-layer assembly has not been previously studied.  相似文献   

12.
Amphiphilic block copolymers composed of D,L-lactide, trimethylene carbonate and the methoxy poly (ethylene glycol) (PETLA) were synthesized with ringopening copolymerization. Studies on the micellization and drug-controlled release behavior of PETLA were performed. Both of the copolymers and the micelles were characterized with the methods of 1H nuclear magnetic resonance (1H-NMR), fluorescence spectroscopy, gel permeation chromatographic (GPC), dynamic light scattering (DLS), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV). As a result, the critical micelle concentration of the copolymer was decreased with the increase of the hydrophobic chain length. DLS results indicated the diameters of the micelle were increased with increasing hydrophobic length. TEM photographs illustrated that micelles MT1 were regularly spherical with the diameter from 30 nm to 40 nm. Taking 9-nitro-20(S)-camptothecin (9-NC) for the model drug, the release profiles in vitro show that the release behavior from micelles was controllable and nearly in zero order after the initial burst release. __________ Translated from Acta Polymerica Sinica, 2008, 2 (in Chinese)  相似文献   

13.
Monodisperse magnetite nanoparticles modified with poly(ethylene glycol) (PEG) were synthesized using a silane functionalized PEG obtained by reacting 3-aminopropyl triethoxysilane with carboxylic acid-methoxy PEG (mPEG-COOH) using amide reactions. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements show the particles are monodisperse (sigma(gv) approximately 0.2) and stable in water for pH of 3-9 and ionic strengths, up to 0.3 M NaCl. Thermogravimetric analysis coupled with TEM and DLS indicates formation of a dense graft layer on the particle surface. An analysis of the interparticle interaction energy indicates that the particles are stabilized by strong steric repulsions between PEG chains on their surface.  相似文献   

14.
A methoxy poly(ethylene glycol) (MePEG)-conjugated linoleic acid (CLA) polymeric conjugate is synthesized with the use of dicyclohexycarbodiimide and 4-dimethylaminopyridine as the coupling agent and the catalyst, respectively. Self-assembled MePEG-CLA conjugate micelles are prepared by dialysis in water. Fluorescence spectroscopy indicates that the MePEG-CLA conjugate exhibits a typical core-shell micellar structure, and the estimated critical micelle concentration is 1.2 × 10−5 mol L−1. Dynamic light scattering and transmission electron microscopy demonstrate that the prepared MePEG-CLA micelles have spherical shape and an average diameter of approximately 100 nm. Paclitaxel is entrapped into MePEG-CLA lyophilized powder. The release of paclitaxel from the loaded micelles is investigated in vitro. A biphasic release pattern with a fast release rate followed by a slow release is observed. The text was submitted by the authors in English.  相似文献   

15.
A series of amphiphilic copolymers were synthesized by reversible addition-fragmentation chain transfer cyclocopolymerization of a styrenic monomer with maleic anhydride followed by grafting methoxy poly(ethylene glycol) onto the anhydride groups of the polymer chain. These amphiphilic graft copolymers exhibit multiple responsiveness toward temperature, pH, and selected cations in aqueous solutions. The cloud points (CP) of the graft copolymers increase with increasing length of the side chains and with increasing pH value of the solution. The addition of KCl and LiCl to the solutions had a salting-out effect lowering the CPs of the graft copolymers. The addition of NaCl, however, first raised the CP due to the complexation of the crown ether with Na(+) and then lowered the CP. The light scattering results confirmed an increase in phase transition temperature at lower concentrations of NaCl (5 and 10 mM) and then a decrease at a higher concentration of the sodium salt (100 mM).  相似文献   

16.
17.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

18.
The solubilization of styrene by poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers has been examined. From turbidity measurements the solubility limit of the monomer in the micelles was obtained and the distribution coefficients were evaluated. Dynamic light scattering revealed that below the solubility limit, solubilization leads to a slight increase in micelle size, while above the solubility limit, there is a dramatic increase in particle size and turbidity as oil-in-water emulsions are formed through coalescence of monomer-swollen micelles. Polymerizations carried out below the solubility limit using the graft copolymer micelles as templates resembled microemulsion polymerizations in nature and led to very fine sterically stabilized polystyrene latex particles. Through careful control of the monomer concentration and the polymerization temperature it was possible to obtain spherical nanosize latex particles with similar size to those of the micelle precursors (10 nm) up to 11% monomer by weight. Polymerizations above the solubility limit, on the other hand, showed similarities with emulsion polymerizations and resulted in larger particles with higher polydispersity.  相似文献   

19.
A series of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers was synthesized and characterized in order to assess the potential of these copolymers as a micellar drug-delivery system. Varying the caprolactone:MePEG weight ratio in the reaction mixture allowed the synthesis of diblock copolymers with a MePEG molecular weight of 750 g/mol and PCL block lengths of 2, 5 or 10 repeat units. Phase diagrams of aqueous solutions of the copolymers were constructed which displayed characteristic cloud points and Krafft points. As the degree of polymerization of PCL increased, critical micelle concentration (CMC) values decreased from 6.97 x 10(-1) to 3.38 x 10(-3) g/l, partition equilibrium coefficients (Kv) increased from 1.09 x 10(4) to 22.2 x 10(4),and hydrodynamic diameters increased from 12.2 to 19.5 nm. The micelle morphology was determined to be spherical by transmission electron microscopy.  相似文献   

20.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号