首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
NMR study has shown that DNA oligonucleotide d(G(3)T(4)G(4)) adopts an asymmetric bimolecular G-quadruplex structure in solution. The structure of d(G(3)T(4)G(4))(2) is composed of three G-quartets, overhanging G11 residue and G3, which is part of the loop. Unique structural feature of d(G(3)T(4)G(4))(2) fold is the orientation of the two loops. Thymidine residues T4-T7 form a diagonal loop, whereas T15-T18 form an edge type loop. The G-quadruplex core of d(G(3)T(4)G(4))(2) consists of two stacked G-quartets with syn-anti-anti-anti alternation of dG residues and one G-quartet with syn-syn-anti-anti alternation. Another unusual structural feature of d(G(3)T(4)G(4))(2) is a leap between G19 and G20 over the middle G-quartet and chain reversal between G19 and G20 residues. The presence of one antiparallel and three parallel strands reveals the hitherto unknown G-quadruplex folding motif consisting of antiparallel/parallel strands and diagonal as well as edge type loops. Further examination of the influence of different monovalent cations on the folding of d(G(3)T(4)G(4)) showed that it forms a bimolecular G-quadruplex in the presence of K+, Na+, and NH4+ ions with the same general fold.  相似文献   

2.
The topology of DNA quadruplexes depends on the nature and number of the nucleotides linking G-quartet motifs. To assess the effects of a three-nucleotide TTT linker, the crystal structure of the DNA sequence d(G(4)T(3)G(4)) has been determined at 1.5 A resolution, together with that of the brominated analogue d(G(4)(Br)UTTG(4)) at 2.4 A resolution. Both sequences form bimolecular intermolecular G-quadruplexes with lateral loops. d(G(4)(Br)UTTG(4)) crystallized in the monoclinic space group P2(1) with three quadruplex molecules in the asymmetric unit, two associating together as a head-to-head stacked dimer, and the third as a single head-to-tail dimer. The head-to-head dimers have two lateral loops on the same G-quadruplex face and form an eight-G-quartet stack, with a linear array of seven K(+) ions between the quartets. d(G(4)T(3)G(4)) crystallized in the orthorhombic space group C222 and has a structure very similar to the head-to-tail dimer in the P2(1) unit cell. The sequence studied here is able to form several different folds; however, all four quadruplexes in the two structures have lateral loops, in contrast to the diagonal loops reported for the analogous quadruplex with T(4) loops. A total of seven independent T(3) loops were observed in the two structures. These can be classified into two discrete conformational classes, suggesting that these represent preferred loop conformations that are independent of crystal-packing forces.  相似文献   

3.
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.  相似文献   

4.
Variations in the hydrogen bond network of the Oxy-1.5 DNA guanine quadruplex have been monitored by trans-H-bond scalar couplings, (h2)J(N2N7), for Na(+)-, K(+)-, and NH(4)(+)-bound forms over a temperature range from 5 to 55 degrees C. The variations in (h2)J(N2N7) couplings exhibit an overall trend of Na(+) > K(+) > NH(4)(+) and correlate with the different cation positions and N2-H2...N7 H-bond lengths in the respective structures. A global weakening of the (h2)J(N2N7) couplings with increasing temperature for the three DNA quadruplex species is accompanied by a global increase of the acceptor (15)N7 chemical shifts. Above 35 degrees C, spectral heterogeneity indicates thermal denaturation for the Na(+)-bound form, whereas spectral homogeneity persists up to 55 degrees C for the K(+)- and NH(4)(+)-coordinated forms. The average relative change of the (h2)J(N2N7) couplings amounts to approximately 0.8 x 10(-3)/K and is thus considerably smaller than respective values reported for nucleic acid duplexes. The significantly higher thermal stability of H-bond geometries in the DNA quadruplexes can be rationalized by their cation coordination of the G-quartets and the extensive H-bond network between the four strands. A detailed analysis of individual (h2)J(N2N7) couplings reveals that the 5' strand end, comprising base pairs G1-G9* and G4*-G1, is the most thermolabile region of the DNA quadruplex in all three cation-bound forms.  相似文献   

5.
Short guanine(G)‐repeat and cytosine(C)‐repeat DNA strands can self‐assemble to form four‐stranded G‐quadruplexes and i‐motifs, respectively. Herein, G‐rich and C‐rich strands with non‐G or non‐C terminal bases and different lengths of G‐ or C‐repeats are mixed selectively in pH 4.5 and 6.7 ammonium acetate buffer solutions and studied by electrospray ionization mass spectrometry (ESI‐MS). Various strand associations corresponding to bi‐, tri‐ and tetramolecular ions are observed in mass spectra, indicating that the formation of quadruplex structures is a random strand by strand association process. However, with increasing incubation time for the mixtures, initially associated hybrid tetramers will transform into self‐assembled conformations, which is mainly driven by the structural stability. The melting temperature values of self‐assembled quadruplexes suggest that the length of G‐repeats or C‐repeats shows more significant effect on the stability of quadruplex structures than that of terminal residues. Accordingly, we can obtain the self‐associated tetrameric species generated from the mixtures of various homologous G‐ or C‐strands efficiently by altering the length of G‐ or C‐repeats. Our studies demonstrate that ESI‐MS is a very direct, fast and sensitive tool to provide significant information on DNA strand associations and stoichiometric transitions, particularly for complex mixtures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

7.
DNA guanine (G) quadruplexes are stabilized by an interesting variation of the hydrogen-bonding schemes encountered in nucleic acid duplexes and triplexes. In an attempt to use this mode of molecular recognition, we target a dimeric G-quadruplex formed by the Oxytricha nova telomeric sequence d(G(4)T(4)G(4)) with a peptide nucleic acid (PNA) probe having a homologous rather than complementary sequence. UV-vis and CD spectroscopy reveal that a stable hybrid possessing G-quartets is formed between the PNA and DNA. The four-stranded character of the hybrid and the relative orientation of the strands is determined by fluorescence resonance energy transfer (FRET) experiments. FRET results indicate that (i) the two PNA strands are parallel to each other, (ii) the two DNA strands are parallel to each other, and (iii) the 5'-termini of the DNA strands align with the N-termini of the PNA strands. The resulting PNA(2)-DNA(2) quadruplex shows a preference of Na(+) over Li(+) and displays thermodynamic behavior consistent with alternating PNA and DNA strands in the hybrid. The formation of this novel supramolecular structure demonstrates a new high-affinity DNA recognition mechanism and expands the scope of molecular recognition by PNA.  相似文献   

8.
Mid-infrared photodissociation spectra of mass selected C(3)H(3)(+)-N(2) ionic complexes are obtained in the vicinity of the C-H stretch fundamentals (2970-3370 cm(-1)). The C(3)H(3)(+)-N(2) dimers are produced in an electron impact cluster ion source by supersonically expanding a gas mixture of allene, N(2), and Ar. Rovibrational analysis of the spectra demonstrates that (at least) two C(3)H(3)(+) isomers are produced in the employed ion source, namely the cyclopropenyl (c-C(3)H(3)(+)) and the propargyl (H(2)CCCH(+)) cations. This observation is the first spectroscopic detection of the important c-C(3)H(3)(+) ion in the gas phase. Both C(3)H(3)(+) cations form intermolecular proton bonds to the N(2) ligand with a linear -C-H...N-N configuration, leading to planar C(3)H(3)(+)-N(2) structures with C(2v) symmetry. The strongest absorption of the H(2)CCCH(+)-N(2) dimer in the spectral range investigated corresponds to the acetylenic C-H stretch fundamental (v(1) = 3139 cm(-1)), which experiences a large red shift upon N(2) complexation (Delta(v1) approximately -180 cm(-1)). For c-C(3)H(3)(+)-N(2), the strongly IR active degenerate antisymmetric stretch vibration (v4)) of c-C(3)H(3)(+) is split into two components upon complexation with N(2): v4)(a(1)) = 3094 cm(-1) and v4)(b(2)) = 3129 cm(-1). These values bracket the yet unknown v4) frequency of free c-C(3)H(3)(+) in the gas phase, which is estimated as 3125 +/- 4 cm(-1) by comparison with theoretical data. Analysis of the nuclear spin statistical weights and A rotational constants of H(2)CCCH(+)-N(2) and c-C(3)H(3)(+)-N(2) provide for the first time high-resolution spectroscopic evidence that H(2)CCCH(+) and c-C(3)H(3)(+) are planar ions with C(2v) and D(3h) symmetry, respectively. Ab initio calculations at the MP2(full)/6-311G(2df,2pd) level confirm the given assignments and predict intermolecular separations of R(e) = 2.1772 and 2.0916 A and binding energies of D(e) = 1227 and 1373 cm(-1) for the H-bound c-C(3)H(3)(+)-N(2) and H(2)CCCH(+)-N(2) dimers, respectively.  相似文献   

9.
The natural neurotransmitter (R)-norepinephrine takes the monocationic form in 93% abundance at the physiological tissue pH of 7.4. Ab initio and DFT/B3LYP calculations were performed for 12 protonated conformers of (R)-norepinephrine in the gas phase with geometry optimizations up to the MP2/6-311++G level, and with single-point calculations up to the QCISD(T) level at the HF/6-31G-optimized geometries. Four monohydrates were studied at the MP2/6-31G//HF/6-31G level. In the gas phase, the G1 conformer is the most stable with phenyl.NH(3)(+) gauche and HO(alc).NH(3)(+) gauche arrangements. A strained intramolecular hydrogen bond was found for conformers (G1 and T) with close NH(3)(+) and OH groups. Upon rotation of the NH(3)(+) group as a whole unit about the C(beta)-C(alpha) axis, a 3-fold potential was calculated with free energies for barriers of 3-12 kcal/mol at the HF/6-31G level. Only small deviations were found in MP2/6-311++G single-point calculations. A 2-fold potential was calculated for the phenyl rotation with free energies of 11-13 kcal/mol for the barriers at T = 310 K and p = 1 atm. A molecular mechanics docking study of (R)-norepinephrine in a model binding pocket of the beta-adrenergic receptor shows that the ligand takes a conformation close to the T(3) arrangement. The effect of aqueous solvation was considered by the free energy perturbation method implemented in Monte Carlo simulations. There are 4-5 strongly bound water molecules in hydrogen bonds to the conformers. Although hydration stabilizes mostly the G2 form with gauche phenyl.NH(3)(+) arrangement and a water-exposed NH(3)(+) group, the conformer population becomes T > G1 > G2, in agreement with the PMR spectroscopy measurements by Solmajer et al. (Z. Naturforsch. 1983, 38c, 758). Solvent effects reduce the free energies for barriers to 3-6 and 9-12 kcal/mol for rotations about the C(beta)-C(alpha) and the C(1)(ring)-C(beta) axes, respectively.  相似文献   

10.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

11.
The effect of phosphate group modifications on formation and properties of G‐quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G‐quadruplexes formed by oligodeoxynucleotides d(G4T), d(TG4T) and d(TG5T), in which all phosphates were replaced with N‐methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G‐quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G‐rich strands has been detected using native gel electrophoresis, size‐exclusion chromatography and ESI‐MS. In summary, our results indicate that the phosphate modifications studied are compatible with G‐quadruplex formation, which could be used for the design of biologically active compounds.  相似文献   

12.
Knowledge of forces that drive conformational transitions of G-quadruplexes is crucial for understanding the molecular basis of several key cellular processes. It can only be acquired by combining structural, thermodynamic and kinetic information. Existing biophysical and structural evidences on polymorphism of intermolecular G-quadruplexes have shown that the formation of a number of these structures is a kinetically controlled process. Reported kinetic models that have been used to describe the association of single strands into quadruplex structures seem to be inappropriate since the corresponding model-predicted activation energies turn out to be negative. By contrast, we propose here a novel kinetic model that successfully describes experimentally monitored folding/unfolding transitions of G-quadruplexes and gives positive activation energies for all elementary steps, including those describing association of two single strands into bimolecular quadruplex structures. It is based on a combined thermodynamic and kinetic investigation of polymorphic behavior of bimolecular G-quadruplexes formed from d(G4T4G4) and d(G4T4G3) strands in the presence of Na(+) ions, monitored by spectroscopic (UV, CD) and calorimetric (DSC) techniques. According to our experiment and model analysis the topology of the measured G-quadruplexes is clearly flexible with the conformational forms that respond to the rate of temperature change at which global unfolding/folding transitions occur.  相似文献   

13.
NMR, molecular dynamics and mechanics calculations, and CD spectroscopy were used to characterise three tetramolecular quadruplex complexes: [d(TG(Br)GGT)](4), [d(TGG(Br)GT)](4) and [d(TGGG(Br)T)](4), where G(Br) indicates an 8-bromoguanine residue. All three quadruplexes are characterised by a 4-fold symmetry with all strands parallel to each other and, differently to what has been observed for other parallel quadruplex structures, with a tetrad (formed by 8-Br-dGs) in a syn conformation. The whole of the data demonstrates that the replacement in turn of different dG residues with 8-Br-dG in the sequence 5[prime or minute]-TGGGT-3[prime or minute] affects the resulting structures in different ways, leading to different CD profiles and thermal stabilities. Particularly, [d(TG(Br)GGT)](4) and [d(TGG(Br)GT)](4) are more stable than the unmodified sequence, whereas [d(TGGG(Br)T)](4) is much less stable than the natural counterpart. The conformational features found in the three quadruplexes might, in principle, amplify the range of applicability of synthetic oligonucleotides as aptamers or catalysts, by providing novel structural motifs with different molecular recognition capabilities from those of native DNA sequences.  相似文献   

14.
A solution state NMR study has shown that d(G4T3G4) in the presence of (15)NH4(+) ions folds into a single bimolecular G-quadruplex structure in which its G-tracts are antiparallel and the two T3 loops span along the edges of the outer G-quartets on the opposite sides of the G-quadruplex core. This head-to-tail topology is in agreement with the topology of the G-quadruplex recently found in the X-ray crystal structure formed by d(G4T3G4) in the presence of K(+) ions [Neidle et al. J. Am. Chem. Soc. 2006, 128, 5480]. In contrast, the presence of K(+) ions in solution resulted in a complex ensemble of G-quadruplex structures. Molecular models based on NMR data demonstrate that thymine loop residues efficiently base-base stack on the outer G-quartets and in this way stabilize a single structure in the presence of (15)NH4(+) ions. The use of heteronuclear NMR enabled us to localize three (15)NH4(+) ion binding sites between pairs of adjacent G-quartets and study the kinetics of their movement. Interestingly, no (15)NH4(+) ion movement within the G-quadruplex was detected at 25 degrees C. At 35 degrees C we were able to observe slow movement of (15)NH4(+) ions from the outer binding sites to bulk solution with the characteristic residence lifetime of 1.2 s. The slow movement of (15)NH4(+) ions from the outer binding sites into bulk solution and the absence of movement from the inner binding site were attributed to steric hindrance imposed by the T3 loops and the rigidity of the G-quadruplex.  相似文献   

15.
The relative gas-phase stabilities of seven quadruplex DNA structures, [d(TG(4)T)](4), [d(T(2)G(3)T)](4), [d(G(4)T(4)G(4))](2), [d(T(2)AG(3))(2)](2), d(T(2)AG(3))(4), d(T(2)G(4))(4), and d(G(2)T(4))(4), were investigated using molecular dynamics simulations and electrospray ionization mass spectrometry (ESI-MS). MD simulations revealed that the G-quadruplexes maintained their structures in the gas phase although the G-quartets were distorted to some degree and ammonium ions, retained by [d(TG(4)T)](4) and [d(T(2)G(3)T)](4), played a key role in stabilizing the tetrad structure. Energy-variable collisional activated dissociation was used to assess the relative stabilities of each quadruplex based on E(1/2) values, and the resulting order of relative stabilities was found to be [d(TG(4)T)](4) > d(T(2)AG(3))(4) approximately d(T(2)G(4))(4) > [d(T(2)G(3)T)](4) > [d(T(2)AG(3))(2)](2) approximately d(G(2)T(4))(4) approximately [d(G(4)T(4)G(4))](2.) The stabilities from the E(1/2) values generally paralleled the RMSD and relative free energies of the quadruplexes based on the MD energy analysis. One exception to the general agreement is [d(G(4)T(4)G(4))](2), which had the lowest E(1/2) value, but was determined to be the most stable quadruplex according to the free-energy analysis and ranked fourth based on the RMSD comparison. This discrepancy is attributed to differences in the fragmentation pathway of the quadruplex.  相似文献   

16.
17.
A new class of geminally disubstituted C-linked carbo-β(2,2)-amino acids (β(2,2)-Caa) were prepared from d-glucose. The structures of homooligomeric di-, tetra-, and hexapeptides prepared from (S)-β(2,2)-Caa were studied with NMR (in CDCl(3)), CD, and Molecular Dynamics calculations. These β(2,2)-peptides have shown the presence of stable 6-membered (6-mr) NH(i)···CO(i) intra-residue H-bonded (C(6)) strands. It was found that the strand structures realized in these systems were additionally stabilized by the electrostatic interaction arising due to the proximity of amide proton (NH(i)) to the oxygen of the preceding methoxy group (O(Me)(i-1)) at the C3 carbon of the carbohydrate ring. The new β(2,2)-Caa residues with additional support to H-bonding considerably expand the domain of foldamers.  相似文献   

18.
The interaction of G-quadruplex DNA with the macrocyclic compound BOQ1, which possesses two dibenzophenanthroline (quinacridine) subunits, has been investigated by a variety of methods. The oligonucleotide 5'-A(GGGT(2)A)(3)G(3), which mimics the human telomeric repeat sequence and forms an intramolecular quadruplex, was used as one model system. Equilibrium binding constants measured by biosensor surface plasmon resonance (SPR) methods indicate a high affinity of the macrocycle for the quadruplex conformation (K > 1 x 10(7) M(-)(1)) with two equivalent binding sites. The affinity of BOQ1 for DNA duplexes is at least 1 order of magnitude lower. In addition, the macrocycle is more selective than the monomeric control compound (MOQ2), which is not able to discriminate between the two DNA structures (K(duplex) approximately K(quadruplex) approximately 10(6) M(-)(1)). Strong binding of BOQ1 to G4 DNA sequences was confirmed by fluorometric titrations with a tetraplex-forming oligonucleotide. Competition dialysis experiments with a panel of different DNA structures, from single strands to quadruplexes, clearly established the quadruplex binding specificity of BOQ1. Fluorescence resonance energy transfer (FRET) T(m) experiments with a doubly labeled oligonucleotide also revealed a strong stabilization of the G4 conformation in the presence of BOQ1 (DeltaT(m) = +28 degrees C). This DeltaT(m) value is one of the highest values measured for a G-quadruplex ligand and is significantly higher than observed for the monomer control compounds (DeltaT(m) = +10-12 degrees C). Gel mobility shift assays indicated that the macrocycle efficiently induces the formation of G-tetraplexes. Strong inhibition of telomerase was observed in the submicromolar range (IC(50) = 0.13 microM). These results indicate that macrocycles represent an exciting new development opportunity for targeting DNA quadruplexes.  相似文献   

19.
The NMR solution structure of the A.T rich DNA 14-mer duplex d(ATACATGGTACATA).d(TATGTACCATGTAT) is reported. This is compared with the NMR structure of the same duplex intrastrand cross-linked at the d(G*pG*) site by cis-(Pt(NH3)2?2+, derived from the anticancer drug cisplatin. The unmodified duplex has B-DNA geometry, but there is a large positive base-pair roll (roll angle 24 +/- 2 degrees) at the T9-A10 step on the 3' side of the central GG site. Platination of the DNA duplex causes the adjacent guanine bases to roll toward one another (roll angle 44 +/- 4 degrees), leading to an overall helix bend of 52 +/- 9 degrees. The platinum atom is displaced from the planes of the coordinated G7* and G8* by 0.8 A and 0.3 A, respectively. The minor groove opposite the platinum lesion is widened and flattened, with geometric parameters similar to those of A-form DNA. The unwinding of the helix at the platination site is 26 degrees. Platination causes the DNA duplex to bend toward the 3'-end (with respect to the G*G* strand), in contrast to G C-rich structures reported previously, which bend toward the 5'-end. This difference can be attributed to the predisposition of the A.T rich duplex toward bending in this region. Protein recognition of bent platinated G*G* lesions may therefore exhibit a strong dependence on the local DNA structure.  相似文献   

20.
G-quadruplex formation in the sequences 5'-(TTAGGG)(n) and 5'(TTAGGG)(n)TT (n = 4, 8, 12) was studied using circular dichroism, sedimentation velocity, differential scanning calorimetry, and molecular dynamics simulations. Sequences containing 8 and 12 repeats formed higher-order structures with two and three contiguous quadruplexes, respectively. Plausible structures for these sequences were determined by molecular dynamics simulations followed by experimental testing of predicted hydrodynamic properties by sedimentation velocity. These structures featured folding of the strand into contiguous quadruplexes with mixed hybrid conformations. Thermodynamic studies showed the strands folded spontaneous to contain the maximum number contiguous quadruplexes. For the sequence 5'(TTAGGG)(12)TT, more than 90% of the strands contained completely folded structures with three quadruplexes. Statistical mechanical-based deconvolution of thermograms for three quadruplex structures showed that each quadruplex melted independently with unique thermodynamic parmameters. Thermodynamic analysis revealed further that quadruplexes in higher-ordered structures were destabilized relative to their monomeric counterparts, with unfavorable coupling free energies. Quadruplex stability thus depends critically on the sequence and structural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号