首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Chemical coagulation has been widely used as a method to mitigate membrane fouling in MF/UF membranes used for drinking water treatment. Optimization of coagulation as pre-treatment of membrane processes has not been achieved yet: the optimum condition of coagulation for conventional treatment systems is not necessarily applicable to membrane-based treatment systems. This study investigated (physically) irreversible membrane fouling in an MF membrane used with pre-coagulation by aluminum salt. In a series of bench-scale filtration tests, feed water containing commercially available humic acid or organic matter isolated from surface water was coagulated with polyaluminum chloride (PACl) under various conditions and subsequently filtered with an MF membrane with the nominal pore size of 0.1 μm. It was found that coagulation conditions had great impacts on the degree of physically irreversible fouling. Acidic conditions improved the quality of treated water but generally caused greater physically irreversible fouling than did neutral or alkaline conditions. Also, dosage of coagulant was found to be influential on the degree of membrane fouling: high dosage of coagulant frequently caused more severe irreversible fouling. Sizes of flocs seemed to become small under acidic conditions in this study, which was indicated by high concentrations of aluminum in the permeate under acidic conditions. It is thought that small flocs produced under acidic conditions could migrate into micropores of the membrane and caused physically irreversible fouling by plugging or adsorption. These findings obtained in the bench-scale tests were verified in a long-term pilot-scale test.  相似文献   

2.
This study investigates the performance of ultrafiltration (UF) by membranes coated with titanium dioxide (TiO2) photocatalyst under ultraviolet (UV) illumination in removing natural organic matter (NOM) and possibly in reducing membrane fouling. Experiments were carried out using heat-resistant ceramic disc UF membranes and humic acids as model substances representing naturally occurring organic matter. Membrane sizes of 1, 15, and 50 kDa were used to examine the effects of coating under ultraviolet irradiation. A commercial humic solution was subjected to UF fractionation (batch process); gel filtration chromatography was applied to study the effects of molecular weight distribution of NOM on UF membrane fouling. When compared to naked membranes, UV254 (ultraviolet light of lambda=254 nm) illumination of TiO2-coated membranes exhibits more flux decline with similar effluent quality. Although the UF membrane is able to remove a significant amount of humic materials, the incorporated photocatalysis results in poor performance in terms of permeate flux. The TiO2-coated membrane under UV254 irradiation alters the molecular weight (MW) distribution of humic materials, reducing them to <1 kDa, which is smaller than the smallest (1-kDa) membrane in this study. Thus, TiO2-coated membranes under UV254 irradiation do not perform any better in removing natural organic matter and reducing membrane fouling.  相似文献   

3.
The optimization of the cleaning process, aiming to recover the permeate flux, and diafiltration as a means to obtain and purify soybean lecithin, were analyzed in this study as a means of delaying the decrease in permeate flux during the ultrafiltration (UF) of vegetable oils and their derivatives. It also aimed to maximize the exploration of the use of this type of technology during the processing steps. Thus the influence of the transmembrane pressure, cross flow velocity, and the opening of the permeate valve during the cleaning process (hexane circulation) of a ceramic membrane with a permeation area of 0.2 m2 and a pore diameter of 0.01 mm in a pilot unit with a processing capacity of 40 L, was studied. Four different operational cleaning conditions, associating combinations of pressure (0.5–2.0 bar) and velocity (1.0–5.0 m s−1), as well as the influence of opening the permeate valve, were studied. Also the production and purification of soybean lecithin was carried out by diafiltration of the retentates derived from the UF of the miscella, resulting in a product with about 90% of acetone insoluble matter. The most favorable cleaning condition was associated with a low pressure (0.5 bar) and elevated velocity (5.0 m s−1), with which it was possible to recover the permeate flux in about 85 min.  相似文献   

4.
The effects of surface water pretreatment on membrane fouling and the influence of these different fouling types on the rejection of 21 neutral, positively and negatively charged pharmaceuticals were investigated for two nanofiltration membranes. Untreated surface water was compared with surface water, pretreated with a fluidized anionic ion exchange and surface water, pretreated with ultrafiltration. Fouling the nanofiltration membranes with anionic ion exchange resin effluent, resulted in the deposition of a mainly colloidal fouling layer, with a rough morphology. Fouling the nanofiltration membranes with ultrafiltration permeate, resulted in the deposition of a smooth fouling layer, containing mainly natural organic matter. The fouling layer on the nanofiltration membranes, caused by the filtration of untreated surface water, was a combination of both colloids and natural organic matter.Rejection of pharmaceuticals varied the most for the membranes, fouled with the anionic ion exchange effluent, and variations in rejection were caused by a combination of cake-enhanced concentration polarisation and electrostatic (charge) effects. For the membranes, fouled with the other two water types, variations in rejection were smaller and were caused by a combination of steric and electrostatic effects.Changes in membrane surface hydrophobicity due to fouling, changed the extent of partitioning and thus the rejection of hydrophobic, as well as hydrophilic pharmaceuticals.  相似文献   

5.
Cross-flow ultrafiltration and microfiltration have been used to recover refined soy sauce from soy sauce lees for over 25 years. The precise mechanism which dominated the permeate flux during batch cross-flow filtration has not been clarified. In the present study, we proposed a modified analytical method incorporated with the concept of deadend filtration to determine the initial flux of cross-flow filtration and carried out the permeate recycle and batch cross-flow filtration experiments using soy sauce lees. We used UF and MF flat membrane (0.006 m2 polysulfone) module under different transmembrane pressures (TMP) and cross-flow velocities. The modified analysis provided an accurate prediction of permeate flux during the filtration of soy sauce lees, because this model can consider the change in J0 at initial stage of filtration which was caused by the pore constriction and plugging inside membrane, and these changes may not proceed when the cake was formed on the membrane surface. Mean specific resistance of the cake increased with TMP due to the compaction of the cake and decreased with cross-flow velocity due to the change of deposited particle size, but less depended on the membrane in the present study. These results indicate that the value of J0 determined by modified method was relevant to exclude the effects of the initial membrane fouling by pore constriction due to protein adsorption and plugging with small particles. The modified analytical method for the cake filtration developed in the present study was considered to be capable of selecting an appropriate operating conditions for many cross-flow filtration systems with UF, MF membranes.  相似文献   

6.
There is little information available on the correlation between the concentration of extracellular polymeric substances (EPS) and membrane fouling as well as cleaning efficiency. In this study, two lab-scale flat submerged membrane bioreactors (SMBRs) at sludge retention times (SRTs) of 25 and 250 days were operated at a constant permeate flux (12.5 l m−2 h−1). Samples of activated sludge were tested to quantify the concentration of extractable EPS using cation exchange resin. Batch filtration tests were also performed to determine the specific cake resistances and the flux recoveries. The extractable EPS and protein concentrations were relatively low at the prolonged SRT, leading to cake layers easily removable by the physical manual cleaning or the de-ionized water backwashing and the chemical cleaning with sodium hypochlorite methods. The extent of flux recoveries (both in SMBRs and batch filtration tests) and macroscopic as well as microscopic images indicated that the chemical cleaning could enhance the effectiveness of cleaning. The membrane fouling and cleaning mechanisms were also discussed.__________From Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 392–397.Original English Text Copyright © 2005 by Chackrit Nuengjamnong, Ji Hyang Kweon, Jinwoo Cho, Kyu-Hong Ahn, Chongrak Polprasert.This article was submitted by the authors in English.  相似文献   

7.
Natural organic matter (NOM) has been considered a major contributor to the fouling of microfiltration (MF) and ultrafiltration (UF) membranes employed in water treatment. However, the fouling potential of NOM has often been assessed in terms of its size or chemical composition. The colloid’s chemical properties have often been ignored. In this study, a chemical attachment-based (CAB) model established previously was used in conjunction with a variety of analytical techniques to investigate the existence of three major components of an aquatic NOM and their role in the fouling of a polyvinylidene fluoride MF membrane. The results suggest that colloidal NOM relevant to membrane fouling has a broader size distribution and variations in chemical properties than proposed previously. For the model aquatic NOM used in this research, fouling was primarily contributed by both non-humic and humic colloidal fractions. The non-humic colloids were larger in size and probably adhered to the membrane regardless of the solution chemistry, while humic colloids had variable size and stickiness depending on solution chemistry. The fouling caused by organic colloids was mostly hydraulically irreversible, as a consequence of favorable surface interactions. The CAB model provided a useful way to understand the role of organic colloids in membrane fouling.  相似文献   

8.
Beer clarification by microfiltration demands a finely balanced retention of colloidal particulates (yeast cells, chill haze flocs, etc.) and transmission of soluble macromolecules including carbohydrates, proteins, flavour, and colour compounds which give the “whole some” quality of a beer. The required porous transmission of these macromolecular species led to an unavoidable, complex and dynamic in-pore membrane fouling in terms of fouling constituents, formation, structure and kinetics, which are the main obstacles in obtaining an economically viable flux and consistency in permeate quality.This experimental study was carried out with the aims of understanding the dynamic inter-relation between flux, fouling and system selectivity during a cross-flow beer microfiltration process so that an effective operating strategy for flux optimisation could be formulated in conjunction with the parallel objective of good product (permeate) quality control. Tubular ceramic membranes (Ceramem) with nominal pore diameters of 0.2, 0.5, and 1.3 μm were used. Simultaneous measurement of flux and permeate qualities, such as specific gravity and chill haze level enabled identification of the effect of anti-fouling techniques, such as backflushing on transmission of essential beer components and on the filtered beer quality. The experimental evidence lead to an understanding that the drastic flux enhancement achieved by employing backflushing at reversed membrane morphology was associated with enhanced solute transmission which could, without careful control, upset a balanced transmission of essential beer components and the retention of unwanted “chill haze” components. Further operating parameters and varying system configurations were investigated over their effect on both flux performance and system selectivity. These include membrane pore size, filtration temperature, and the addition of an amorphous silica particles as coagulation agent for hydrophilic proteins.  相似文献   

9.
In protein ultrafiltration (UF), the limiting flux phenomenon has been generally considered a consequence of the presence of membrane fouling or the perceived formation of a cake/gel layer that develops at high operating pressures. Subsequently, numerous theoretical models on gel/cake physics have been made to address how these factors can result in limiting flux. In a paradigm shift, the present article reestablishes the significance of osmotic pressure by examining its contribution to limiting flux in the framework of the recently developed free solvent osmotic pressure model. The resulting free-solvent-based flux model (FSB) uses the Kedem–Katchalsky model, film theory and the free solvent representation for osmotic pressure in its development. Single protein tangential-flow diafiltration experiments (30 kDa MWCO CRC membranes) were also conducted using ovalbumin (OVA, 45 kDa), bovine serum albumin (BSA, 69 kDa), and immuno-gamma globulin (IgG, 155 kDa) in moderate NaCl buffered solutions at pH 4.5, 5.4, 7 and 7.4. The membrane was preconditioned to minimize membrane fouling development during the experimental procedure. The pressure was randomly selected and flux and sieving were determined. The experimental results clearly demonstrated that the limiting flux phenomenon is not dominated by membrane fouling and the FSB model theoretically illustrates that osmotic pressure is the primary factor in limiting flux during UF. The FSB model provides excellent agreement with the experimental results while producing realistic protein wall concentrations. In addition, the pH dependence of the limiting flux is shown to correlate to the pH dependency of the specific protein diffusion coefficient.  相似文献   

10.
The effects of yeast cells on membrane fouling by a protein mixture were studied in dead-end filtration. A 0.2 μm cellulose acetate membrane was used with a 1 g/l protein mixture consisting of equal amounts of bovine serum albumin, lysozyme, and ovalbumin. Yeast cells were used either in suspension or as preformed yeast cakes on top of the membrane. A small concentration of 0.022 g/l yeast cells in suspension enhanced the permeate flux and maintained protein transmission at nearly 100%, compared with a 60% reduction in the protein concentration in the permeate obtained after 3 h for the protein mixture filtered alone. Higher suspended yeast concentrations of 0.043 and 0.18 g/l resulted in lower fluxes and intermediate values for the protein transmission. For the three different thicknesses of preformed yeast cakes studied (0.025, 0.05, and 0.10 cm), the cake with intermediate thickness resulted in protein transmission of nearly 100% and the highest permeate flux. The thinner yeast cake resulted in a lower permeate flux, but it maintained protein transmission at nearly 100%, whereas the thicker cake resulted in a reduction in both permeate flux and protein transmission. The mechanism proposed to explain the results is based on the formation of a secondary membrane by the yeast cells on top of the original membrane. This secondary membrane entraps protein aggregates, which would otherwise cause membrane fouling and reductions in permeate flux and protein transmission.  相似文献   

11.
The concentration of NaCl solution containing natural organic matter by membrane distillation (MD) has been performed. The salt solution produced during animal intestines processing was used as a feed. The presence of organic compounds in the feed caused the fouling of MD membranes. The experiments were performed with polypropylene capillary membranes. A rapid flux decline caused by the deposition of organic matter on the membrane surface has been observed. The morphology and composition of the fouling layer was studied using scanning electron microscopy (SEM) coupled with energy dispersion spectrometry (EDS) and Fourier transform infrared with diffuse reflectance spectroscopy (FTIR-DRS). Protein and sodium chloride constituted the major components of the gel layer. Rinsing of the MD module with a 2 wt.% citric acid solution removed a part of the fouling layer. Boiling of spent NaCl solution followed by filtration resulted in the separation of the organic matter in the form of a deposit. This enabled a significant reduction in the occurrence of fouling phenomenon.  相似文献   

12.
This paper investigates the reversibility of membrane fouling by activated sludge in a membrane bioreactor equipped with a 0.1 μm pore ceramic membrane. The membrane was submitted to a series of tests in which the permeate flux, the transmembrane pressure (TMP) or the circulation velocity were successively varied in cycles by step increments or decreases. When the permeate flux is set below the critical flux, the TMP remains stable and fouling is reversible. On the contrary, when the critical flux is exceeded, the TMP increases and does not stabilize, as in dead-end filtration. The fouling formed is partly irreversible when the flux is lowered again. When the TMP is first increased up to 400 kPa and then decreased back at constant velocity, no hysteresis is found on the flux–TMP graph, showing that fouling is reversible in this case. Velocity cycles were performed by first lowering the velocity from 5 to 1 m/s and raising it again to 5 m/s. In this case again, the fouling induced by reducing the velocity was found to be reversible. However, when the same pressure and velocity cycle tests were performed with activated sludge collected in the aeration tank of a classical wastewater treatment plant, fouling was found to be partly irreversible, showing that the cake formed in the absence of shearing is much more cohesive. In the final part of the paper, we tested a hydrodynamic method of fouling control consisting in alternating short periods of filtration (1–4 s) and short periods of washing (1 or 2 s) at low TMP and high velocity. This method yielded to a 20% permeate flux increase with a 10% reduction in hydraulic energy consumption for classical plant activated sludge.  相似文献   

13.
《Comptes Rendus Chimie》2007,10(9):803-812
One of the critical issues for the application of low-pressure membrane processes (microfiltration, MF or ultrafiltration, UF) as pre-treatment processes for freshwater preparation is membrane fouling due to natural organic matter (NOM). The aim of this preliminary study is to contribute to a better understanding of the fouling phenomena occurring on a regenerated cellulose UF membrane fouled with a humic acid cake deposit. The originality of this work is based on a double approach on surface analysis at both macroscopic and microscopic scales. It is presently reported that humic acid fouling is mainly governed by cake formation, which plays a major role in flux decline via the well-known model of resistances in series. We obtained that the adsorbed resistance is 2% of the total resistance while the cake resistance is 52% of the total resistance, which is higher than that of the virgin membrane. From field emission gun scanning electron microscopy (FESEM) it was found for the first time that the humic acid cake is well organized, and particularly in fractal forms. The fractal dimension (FD) of the cake is determined as 2.52, which is in good agreement with the theoretical fractal dimension of particle–cluster aggregation underlying diffusion-limited aggregation (FD = 2.51). This new microscopic fouling index decreases with the presence of cake and can be correlated with the decrease of the hydraulic permeability. The classical silt density index (SDI) and the new modified fouling index (denoted MFI-UF) were obtained and also proved the presence of the cake. To complete this approach transmembrane streaming potential (denoted SP) measurements were conducted with a new homemade apparatus developed in our lab and presented for the first time in the present article, helped us to observe also a penetration of low molecular fractions of humic acid inside the membrane. Indeed the displacement of the isoelectric point (iep) of the membrane from 2.3 to 1.5 for the virgin and fouled membranes, respectively, permitted to illustrate this penetration. This newly designed SP apparatus is a semi-automatic tool assisted by a software denoted as proFluid 1.2. Furthermore, preliminary experiments with seawater were realized in order to estimate the influence of seawater filtration on the hydraulic permeability and SP parameters for the RC 100-kDa membrane.  相似文献   

14.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

15.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

16.
《中国化学快报》2022,33(8):3594-3602
Hollow fiber microfiltration (MF) and ultrafiltration (UF) membrane processes have been extensively used in water purification and biotechnology. However, complicated filtration hydrodynamics wield a negative influence on fouling mitigation and stability of hollow fiber MF/UF membrane processes. Thus, establishing a mathematical model to understand the membrane processes is essential to guide the optimization of module configurations and to alleviate membrane fouling. Here, we present a comprehensive overview of the hollow fiber MF/UF membrane filtration models developed from different theories. The existing models primarily focus on membrane fouling but rarely on the interactions between the membrane fouling and local filtration hydrodynamics. Therefore, more simplified conceptual models and integrated reduced models need to be built to represent the real filtration behaviors of hollow fiber membranes. Future analyses considering practical requirements including complicated local hydrodynamics and nonuniform membrane properties are suggested to meet the accurate prediction of membrane filtration performance in practical application. This review will inspire the development of high-efficiency hollow fiber membrane modules.  相似文献   

17.
The characteristics of membrane fouling were investigated by examining the behaviors of extracellular polymer substances (EPSs) produced by hydrogen-producing bacteria during hydrogen fermentation from a submerged membrane bioreactor (MBR). The MBR consisted of a 1.4-L submerged membrane filtration tank and 3-L hydrogen fermenter. An intermittent suction operation was selected to maintain stable filtration performance. The operation of the suction pump was alternately shifted to ON for 7 min followed by OFF for 3 min, with bio-gas sparging at a flow rate of 5.0 L/m2/h (LMH), and manually regulated. Most of the EPS during the continuous hydrogen fermentation using an MBR had accumulated in the reactor because they were retained by the membrane by adsorption onto the polymeric membrane surface. The amount of proteins in the EPS extracted was increased to 179 mg/L and that of carbohydrates was increased to 58 mg/L. Cu2+, Mg2+, Zn2+ in the EPS were increased in the range of 1.6–3.3 mg/L. The high concentration of EPS that is produced has a higher chelation potential in the formation of ligand complexes with metals or cations than that in a conventional continuous stirred tank reactor (CSTR). The EPS directly affected the decrease in the permeate flux, which resulted in the clogging of the membrane.  相似文献   

18.
Hydrous manganese dioxide (HMO) nanoparticles incorporated cellulose acetate (CA) composite ultrafiltration (UF) membranes are prepared with the aim of improving the water permeation and BSA contaminant removal. The HMO nanoparticles are synthesized from manganese ion and characterized by FT‐IR, XRD, and FESEM. The effect of variation of HMO on CA membranes is probed using FT‐IR, EDAX, contact angle, SEM, and AFM analysis to demonstrate their chemical functionality, hydrophilicity, and morphology. CA/HMO membranes are showing the enhancement in pure water flux (PWF), water uptake, porosity, hydrophilicity, fouling resistance, BSA rejection, and flux recovery ratio (FRR). CA‐1 membrane displayed higher PWF (143.6 Lm2h?1), BSA rejection (95.9%), irreversible fouling (93.3%), and FRR (93.3%). Overall results confirmed that the CA/HMO nanocomposite UF membranes overcome the bottlenecks and shows potential for water treatment applications.  相似文献   

19.
In desalination, effective pretreatment is the key to reduce membrane fouling that occurs during the seawater reverse osmosis (SWRO) process. However, it is difficult to compare the flux decline after different pretreatments using a small-scale reverse osmosis filtration unit. In this study, we successfully evaluated the effect of pretreatment on SWRO in terms of molecular weight distribution (MWD) of seawater organic matter (SWOM) after 20 h of SWRO operation. Microfiltration (MF), ultrafiltration (UF), ferric chloride (FeCl3) flocculation and powdered activated carbon (PAC) adsorption, were used as pretreatment. The effluents and the retentates after each pretreatment and 20 h of SWRO operation were characterized in terms of MWD.Although the normalized flux of SWRO showed similar flux decline (J/J0 = 0.17) with/without pretreatment, SWOM concentration in the retentates after different pretreatments was different in quantity and it increased linearly with time. The slope of the SWOM increase was 0.110, 0.096, 0.077 and 0.059 after MF, FeCl3 flocculation, UF and PAC adsorption pretreatments, respectively. MW peaks for the seawater used in this study consisted of 1200 Da (biopolymers), 950 Da (fulvic acids), 650 Da (hydrolysates of humic substances), 250 Da (low MW acids) and 90 Da (low MW neutrals and amphiphilics). FeCl3 flocculation preferentially removed 1200 Da (biopolymers), while PAC adsorption mostly removed 950 Da (fulvic acids). UF and NF removed only a marginal amount of relatively large organics, while RO removed the majority of organics. The intensity of 1200, 950, 650 and 250 Da MW in the RO retentates increased with the RO operation time. The organics of MW around 1200 Da (biopolymers) had a relatively low rate of increase with time compared with those of lower MW. This suggests that the SWOM of 1200 Da MW was preferentially retained on the membrane surface.  相似文献   

20.
Transmembrane pressure pulsing (TPP) uses the frequent and periodic reversal of the transmembrane pressure to reduce flux resistances due to membrane fouling. This study examined the effect of TPP on the microfiltration of simulated drinking water (hydrated aluminum silicate solution). Solutions of kaolin clay (0.1–4.0 μm particles, at an approximate concentration of 500 mg l−1 and a turbidity of 402±17 NTU, 0.5 mM CaCl, 2.0 mM NaHCO3, pH 7.5–7.8) were microfiltered with polyethersulfone (PES) 0.16 μm microfiltration membranes at an operating pressure of 30 kPa. Crossflow shear rates were varied between 165 and 1490 s−1. Pulse frequency was varied between 0.3×10−2 and 2 Hz, and pulse amplitude was varied between −3 and −16.5 kPa. It was found that the crossflow shear rates did not significantly effect the non-pulsed permeate flux. An optimum pulse amplitude of about 10 kPa was necessary to maximize the permeate flux for pulse frequencies between 0.3×10−2 and 2.0 Hz. To insure a reduced solute flux, pulse frequencies less than 0.1 Hz were required. These results indicate that TPP can significantly reduce membrane fouling by inorganic particulate materials that are potentially important constituents of natural waters without negatively impacting the rejection of sub-micron particles due to interactions with material accumulated on the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号