首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A piezoelectric motor capable of omni-directional movements has been developed to apply for robot joints, eyes, and precision positioning stage. The piezoelectric actuator has a simple structure of a cone type consisting of two piezoelectric ring-typed ceramics with electrodes divided into four segments and stainless steel elastic bodies. Before manufacturing the piezoelectric motor, the admittance characteristics and displacements of the actuator as a function of frequency were simulated. Elliptical motions of the actuator were created at several frequencies between the longitudinal and transverse resonance frequencies. The actual motor with alumina ball exhibited nice performance using a driving circuit with two rotary encoders and a PID controller. The moving element was omni-directionally operated at a driving frequency of 53.8 kHz and an output voltage of 280 Vp-p. The developed motor enables the moving element to move to a desired position with a resolution of 1.2°/pulse, an angular velocity of 4 rad/s, and a thrust force of 200 g.  相似文献   

2.
We use computer modeling to analzye empirically selected conditions for antimicrobial photodynamic therapy of mucosal tissues. We calculate the optical and thermal fields for experimental conditions for low-intensity (cold) laser irradiation used in treatment of lesions in mucosal tissues stained by methylene blue: λ = 670 nm, power density 150–300 mW/cm2, doses 9–18 J/cm2; λ = 632.8 nm, 15 mW/cm2, dose 4.5 J/cm2. For numerical estimates, we used the optical characteristics of methylene blue and three layers of mucosal tissues at the laser radiation wavelengths, and also the thermal characteristics of the tissues. The experimental conditions were optimized using the ratio of the tissue penetration depth for the absorbed optical energy and the penetration depth of methylene blue into the lesion, while maintaining safe tissue heating temperatures.  相似文献   

3.
An optode system based on a plasticized polymer membrane containing cesium ion-selective fluoroionophore and lipophilic anions for the determination of cesium ions has been developed. In this work, 15-crown-5 derivative including anthracene was used as a fluoroionophore. Emission intensity of the optode membrane incorporating 15-crown-5-anthracene was measured at 500 nm with excitation at 360 nm in the presence of Tris-HCl buffer solution. Under optimum experimental condition, the relative fluorescence intensity was linear with the concentration of cesium ion in the range of 1.0 × 10-4 M to 1.0 × 10-1 M and the detection limit was obtained 4.2 × 10-5 M, as defined by LOD = 3 × Sb/m (where Sb=standard deviation of blank signal and, m=slope of the calibration curve). The effect of pH of sample solution on the fluorescent response, the selectivity, response time and reproducibility of the optode membrane were also discussed. The fluorescent optode system shows a high selectivity and sensitivity for cesium ion with respect to other cations such as K+, Na+ and Li+.  相似文献   

4.
Hybrid membranes doped with silicotungstic acid (STA) were prepared by sol–gel process with 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, phosphoric acid, and tetraethoxysilane as chemical precursors. The thermogravimetry and differential thermal analysis measurements confirmed that the hybrid membranes were thermally stable up to 350 °C. Relatively, a high proton conductivity of 2.85 × 10−2 S/cm was obtained for 10 mol% STA-doped hybrid membrane at 120 °C under 90% RH. The hydrogen permeability was found to decrease in the temperature range 20–120 °C from 1.64 × 10−10 to 1.36 × 10−10 mol/cm.s.Pa.  相似文献   

5.
A biopolymer electrolyte system having conductivity ∼1.3 × 10−4 S cm−1 has been prepared using potato starch, NaI, glutaraldehyde and poly(ethylene glycol) (PEG; molecular weight = 300). High ionic transference numbers (∼0.99) of the material confirmed its electrolytic behaviour. Conductivity and dielectric behaviour as a function of frequency has been studied. Conductivity follows ‘universal power law’ (σ = σ 0 +  n ) with exponent ‘n’ varying from 0.94 to 1.18. Cross-linking and plasticization increases long pathways motion of charge carriers, comparable to sample dimension. Humidity-independent behaviour (up to 80% relative humidity), of impedance and water intake by the system, indicates the system’s potentiality as a promising candidate for humidity immune device fabrication. The addition of PEG has a twofold effect on the material’s conductivity. It not only increases conductivity but also improves the material’s immunity towards humid atmosphere.  相似文献   

6.
Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff’s elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a elaborate analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.  相似文献   

7.
We have developed a standalone, user-friendly, multi-species ringdown spectrometer for in situ measurements of methane (CH4), carbon dioxide (CO2), and a carbon dioxide isotope (13CO2). The instrument is based on near-infrared continuous-wave cavity ringdown spectroscopy (NIR cw-CRDS) and engineered to be of approximately 16 kg with dimensions of 50 cm × 40 cm × 15 cm. The instrument design, optical configuration, electronic control, and performance are described. CH4, CO2, and 13CO2 are measured at different wavelengths that are obtained through multiplexing two distributed feedback laser diodes with central wavelengths at 1597 and 1650 nm. The spectrometer has low power consumption and runs for 4–6 h when powered by a standard car battery. The instrument is operated either locally by interacting with a 7-inch touch screen or remotely via an Internet connection. The 1-σ detection limits for CH4 and CO2 are 0.2 and 120 ppmv, respectively. The measurement uncertainty is better than ±4% of full-scale reading for CH4 and CO2 and ±1.5‰ for δ13C (part per thousand relative to the Pee Dee Belemnite scale). Measurement of each species is near real-time; switching from measuring one species to another takes less than one minute. This work demonstrates a novel multiple-species CRDS-instrumentation platform, which can be adopted for development of an array of ringdown spectrometers for portable, user-friendly, field analysis of a variety of gases in environmental and industrial applications. Discussion of a future version of the spectrometer with better detection sensitivity, higher accuracy, and a smaller geometry is also presented. PACS  42.62.Fi; 42.55.Px; 33.20.Ea; 07.88.+y; 07.57.Ty  相似文献   

8.
Since laser diodes are increasingly used in harsh environments, the effect of irradiation on their performance attracts a lot of attention. We perform experiments for investigating the irradiation effects on laser diodes with distributed feedback operating at 1550 nm output wavelength with 2 mW output power. The radiation source is Co60 gamma ray with a dose rate of 0.5 Gy/s and the dose range within 102 – 8 ∙ 103 Gy. We study experimentally the threshold current, slope efficiency, and spectrum versus the variations in total dose. The results show that the threshold current increases exponentially and the slope efficiency decreases with increase in total dose. In addition, some sharp peaks appear in the spectrum at small driving current, and the spectrum broadens when the driving current increases and, meanwhile, the peak blue shift is observed. The spectrum can be recovered after annealing for 12 hours and when a greater driving current is applied.  相似文献   

9.
We have demonstrated the production of ∼1.9 μm near-infrared radiation by using difference frequency generation within a 5% MgO doped PPLN crystal by coupling ∼735 nm radiation from a tunable external cavity diode laser with relatively high powered 532 nm radiation from both Nd:YVO3 and Nd:YAG lasers. The radiation produced is of low power, ∼15 μW, and was used in conjunction with the sensitivity enhancing techniques of wavelength modulation spectroscopy (WMS) and cavity enhanced absorption spectroscopy (CEAS). Experiments were carried out on rotationally resolved transitions in the combination bands of NH3 and CO2 in the 1.9 μm region. An α min  value of 3.6×10−6 cm−1 Hz−1/2 was achieved for WMS measurements on CO2. A comparable α min  value of 2.2×10−6 cm−1 Hz−1/2 was achieved for NH3 using CEAS. The low NIR power indicates that despite the level of MgO doping quoted for the crystal, under prolonged exposure photorefractive damage has occurred.  相似文献   

10.
High power short pulse gyrotron with operating frequency 395 GHz operating on the second cyclotron harmonic is now under developing at FIR FU. The gyrotron is planned to use in future experiments for plasma diagnostics. For this purpose the output power about 100 kW and pulse duration 100 ns at least are needed. Preliminary estimations of parameters of some versions of the electron guns with accelerating potential U0 = 70-100 kV were performed. Possibilities of non-adiabatic as well as adiabatic guns were considered. It was shown that non-adiabatic system is not reliable for such rather low value of U0, the adiabatic magnetron injection gun (MIG) is more preferable for the gyrotron design. Analytical estimations of the suitable MIG dimensions and operating regime to form good quality electron beam were fulfilled. Numerical optimization of the gun shape and position was performed. It was shown that in spite of the extremely big ratio of the operating current (I0 = 18 A) to the Langmuir current of the gun, close to 0.4-0.5, the suggested MIG can form the helical electron beam (HEB) which is suitable for gyrotron operation properties.  相似文献   

11.
A. Lohrasebi  H. Rafii-Tabar 《Physica A》2008,387(22):5466-5476
The rotary motion of the F0 part of the F0F1-ATPase motor that synthesizes the ATP molecules used by the intracellular stepping motors, such as kinesins, is modeled within a stochastically fluctuating medium via the application of the Langevin dynamics wherein the random intramembrane fluctuations are represented by a white noise. We have investigated the influence of an applied electric field and an applied electric current on this rotary motion, and the subsequent production rate of the ATP molecules. It is seen that the application of a field, or a current, changes both the elastic behavior of the cell membrane and the transmembrane potential. These changes in turn transform the dynamics of the F0 part of the motor. We have found that at low fields, the role of transmembrane potential becomes significant in the production rate of the ATP molecules, whereas at high fields the changes induced in the surface tension of the membrane also contribute to the production rate of the ATP.  相似文献   

12.
In this study, a very sensitive and highly selective irreversible optical chemical sensor (optode) for mercury ions was described. The sensing scheme was based on the interaction of Hg (II) with a newly synthesized fluoroionophore; chloro phenyl imino propenyl aniline (CPIPA) in plasticized PVC membrane. The sensor membranes were tested for the determination of mercury ion in aqueous solutions by batch and flow-through methods. The optodes allow determination of Hg (II) in the working range of 1.0 × 10−9–1.0 × 10−5 M with a detection limit of 4.3 ppb. The sensor exhibited excellent selectivity for Hg (II) with respect to several common alkali, alkaline earth and transition metal ions. The association constant of the 1:1 complex formation for Hg (II) was found to be Ka = 1.86 × 105 M−1. The CPIPA exhibited high fluorescence quantum yield, long excitation and emission wavelength and high Stokes’ shift values in the solid matrix which makes it compatible with solid state optics.  相似文献   

13.
《Ultrasonics》2005,43(1):35-47
A new approach in design of shaft-driving type piezoceramic ultrasonic motor is proposed. The stator of motor consisted of a commercial available buzzer disk in which a piezoceramic membrane is adhered to a metal sheet. The wave propagation on the metal sheet was generated by extended-shrunk force from piezoceramic oscillation. Driving energy came from the vibration modes by mechanical–electrical oscillation of the metal sheet in corresponding to converse piezoelectric effect using a single-phase AC voltage power. Where the relative elliptic motion was occurred between the bearing seat and rotor in order to kinematical delivery, the rotor being driven was connected directly on the bearing seat to transmit the dynamic power with frictional contact force. In analysis of dynamic features, the system transfer function of admittance and equivalent circuit was obtained. The rotating speed of the prototype motor could be reached as high as 2000 rpm on the driving condition of 72 kHz, ±10 Vpp, and 0.2 A. The maximum torque was less than 0.003 N m. It could be utilized in the driver of CD, or the cooling fan in the computer CPU.  相似文献   

14.
Soft dielectric membranes are easily deformed by external stimuli. Large area expansions are known in dielectric elastomer actuators, where the deformation is triggered by an applied electric field. Here we show large deformations of a soft elastomer membrane using the phase transition of an encapsulated liquid from the liquid to the gaseous state. The voltage required for actuating the soft membrane is only 10 V, as compared to 1000 V typically used in dielectric elastomer actuators. We report an area expansion of 120%, with large blocking forces from 1 to 6 N for 9 mm wide and 80 μm thick membranes. The proposed actuator concept is prone to miniaturization.  相似文献   

15.
Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (∼ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (∼ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated. PACS  42.55.Px; 42.60.-v; 42.62.Fi; 07.07.Df  相似文献   

16.
We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼1.5 × 104 J cm − 2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm − 2 for the 45 fs pulses and 6.2 × 1014 W cm − 2 for the 25 ps pulses are much higher than 5 × 1012 W cm − 2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.  相似文献   

17.
A novel flow injection-gas-diffusion (GD-FI) system has been developed for the on-line analysis of ammonium ion in waters with fluorimetric detection, using an acceptor solution containing the Eosin-Bluish (EB) acid-base indicator. This, together with optimization of the process of gas transfer through the membrane, increases the sensitivity of the method to a considerable extent. Under optimum conditions, it is possible to determine the analyte within the 0.02–1.5 mg l-1 range, with a limit of detection of 5 μg l-1 and relative standard deviations (n = 12, [NH4+] = 50 μg l-1 and 0.05 μg l-1) of 3.4% and 3.0% respectively. The determination rate was 15 samples per hour.  相似文献   

18.
We present the results of an experimental study of the ablation spectral energy thresholds for a number of polymer materials ((C2F4) n , (CH2O) n ) exposed to femtosecond (τ0.5 ~ 45–70 fs) laser pulses (λ ~ 266, 400, 800 nm) under atmospheric conditions and under vacuum (p ~ 10–2 Pa). We have analyzed the energy thresholds and the efficiency of optical, thermophysical, and gasdynamic processes in laser ablation vs. the laser pulse duration and photon energy.  相似文献   

19.
In the present work, a novel blend polymer electrolyte membrane using poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and lithium per chlorate (LiClO4) in different compositions has been prepared by the solution-casting technique. Their chemical, structural characters, thermal behavior, surface morphology, and ionic conductivity were studied using Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric/differential thermal analyzer, scanning electron microscopy, and AC impedance analyzer, respectively. A maximum ionic conductivity value of 1.67 × 10−4 S/cm at 303 K is obtained for PVAc–PMMA–LiClO4 complexes in the ratio of 25 × 75, keeping LiClO4 constant as 10 wt.% among all the compositions studied.  相似文献   

20.
The dielectric constant and the electrical conductivity of the transparent glasses in the composition 3Na2O-7B2O3 (NBO) were investigated in the 100 Hz–10 MHz frequency range at various temperatures. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 0.76 ± 0.02 eV, close to that (0.74 ± 0.02 eV) obtained from DC conductivity studies. The frequency-dependent electrical conductivity was analyzed using Jonscher’s power law. Temperature-dependent behavior of the frequency exponent (n) suggested that the correlated-barrier hopping model was the most appropriate to rationalize the electrical transport phenomenon in NBO glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号