首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在室温下,以硝酸银为银源,抗坏血酸为还原剂,通过调节表面活性剂聚乙烯吡络烷酮的浓度,实现对花状银纳米颗粒的可控制备。利用扫描电子显微镜、原子力显微镜、X射线衍射和X射线能谱等手段检测并分析了材料的形貌结构和成分组成。实验结果表明,当聚乙烯吡络烷酮的浓度为0.1 mol/L时,所制备花状银纳米颗粒的表面结构达到最精细的状态且颗粒的尺寸达到微米量级,适合对单颗粒进行定位与光学性质研究。以结构最优化的花状银纳米颗粒为表面增强拉曼散射基底材料,以羟基苯甲酸为探针,对单个和少数颗粒的表面增强拉曼散射效应进行了研究,并借助暗场散射光谱分析了基底的表面增强拉曼散射机理。结果显示,该花状银纳米颗粒因其独特的表面结构为拉曼信号增强提供了大量“热点”。良好的拉曼性能以及较低的制备成本表明,该新型表面增强拉曼散射基底具有很大的应用前景。  相似文献   

2.
采用传统熔融淬火技术制备了一系列Er3+离子掺杂复合银纳米颗粒的铋酸盐玻璃样品.研究了纳米银含量的改变对Er3+离子荧光发射特性的影响.研究发现,铒在1.53 μm处的荧光强度在银纳米颗粒质量分数为0.2%处取得最大值,为未掺杂银纳米颗粒时的4.6倍.其荧光增强的原因归结于银纳米颗粒表面等离子体共振导致局域场增强和Ag...  相似文献   

3.
Comparing with physical and chemical methods, green synthesis techniques are emerging as facile and eco-friendly methods for the synthesis of silver nanoparticles. In this work, we demonstrated the biological synthesis of silver nanoparticles by the reduction of silver ions using kiwifruit juice as the reducing and stabilizing reagent. From the evidence of ultraviolet-visible spectroscopy and transmission electron microscopy, different sizes of silver nanoparticles were formed when the juice volume, reaction temperature, and reaction time were altered with respect to 0.01% silver acetate solution. The synthesized silver nanoparticles were stable for more than 1 month. Transmission electron microscopy studies showed the silver nanoparticles synthesized in room temperature have the diameters in the range of 5–25 nm. The proposed synthesis method is green and low cost, and the synthesized silver nanoparticles have potential bioanalytical applications.  相似文献   

4.
制备了银溶胶作为表面增强活性基底,以此为基础详细研究了BPA的表面增强拉曼光谱(SERS)。研究了促凝剂氯化钠的加入对增强效果的影响。实验结果表明,当BPA乙醇溶液的浓度低至10-7g/mL时,依然可以得到明显的SERS信号。此方法操作简便快捷,无需对样品进行预处理,在BPA的快速检测方面具有很大应用潜力。  相似文献   

5.
电离辐射对生物体影响是目前生物医学领域研究的热点之一.本文利用基于核磁共振氢谱(1H NMR)的代谢组学技术研究来自暴露于不同的电离辐射的C57BL/6J小鼠的肾脏的水溶性萃取物,并试图寻找电离辐射对小鼠肾脏影响的特异性生物标志物.分析结果表明,辐射组可与相应的对照组明显区分.在所发现的75个代谢物中,有6种代谢物的浓度发生显著性变化,分别为2-氨基丁酸、3-羟基丁酸、高丝氨酸、1,3-丙二胺、β-丙氨酸和抗坏血酸.这些代谢物可能成为高剂量电离辐射对生物体肾脏代谢影响的标志物.  相似文献   

6.
An indirect colorimetric method is presented for spectrophotometric determination of hydrazine, phenylhydrazine, and isoniazid. Reduction of silver ions to silver nanoparticles (AgNPs) by these analytes as active reducing agents in the presence of polyvinylpyrrolidone (PVP) and also cetyltrimethylammonium chloride (CTAC) as a stabilizer is the basis of the proposed method. The changes in plasmon absorbance of the AgNPs at λ = 415 nm in the presence of PVP were proportional to concentration of hydrazine, phenylhydrazine, and isoniazid in the ranges of 4.0–150.0 µM, 1.0–55.0 µM, and 2.0–30.0 µM, respectively, and the detection limit obtained was 0.79 µM. In the presence of CTAC, the linear ranges were 0.5–10.0 and 10.0–300.0 µM for hydrazine, 1.0–40.0 µM for phenylhydrazine, and 0.2–10.0 and 10.0–90.0 µM for isoniazid, and the detection limit was 0.12 µM. The method has been applied for determination of these analytes in different real samples such as boiler feed water and tablet.  相似文献   

7.
Exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall applications. Despite their wide use, detailed toxicokinetic data and information on their action mechanisms in vivo are still scarce. One important obstacle is their fate and transformation patterns in biological environments where AgNPs get a “new face” after interaction with biomolecules, particularly proteins. The impact of protein corona on AgNP effects in vivo is eludicated. The in vivo effects of AgNPs prepared with two different protein coronas, albumin, and metallothionein, with polymer‐coated AgNPs are compared in male and female Wistar rats after intravenous administration. The results demonstrate that the character of the protein coronas on the AgNP surface affects not only distribution, but also oxidative stress response and genotoxicity in tissues of rat exposed to AgNPs. Additionally, sex‐related effects are observed. By emphasizing the importance of protein corona formation and sex‐related response, the obtained data support a reliable evidence base needed for assessing the health risks of the steadily increasing human exposure to AgNPs.  相似文献   

8.
The spontaneous aggregation of silver nanoparticles on a two-dimensional surface at room temperature is investigated. The nanoparticles were deposited on a carbon film and have been observed by a transmission electron microscope (TEM) for over one year. These particles were about 10nm, spherical and well dispersed initially, and an obviously spontaneous agglomeration was observed at the 12th day, the values, coverage rate of the silver particles on carbon film, were increased with time (before 40th day), but reduced with time (after 40th day). These show that the aggregates of the particles tend to have the smallest surface to reduce their surface free energy and are compact three-dimensional cluster in which the most size is above 100nm. Agglomerating is a successively slow diffusion-limited aggregation (DLA) growth. Another phenomenon, a big aggregate gathering some particles and a small aggregate to form a still bigger one, is observed. This indicates that the aggregating processes are controlled by migration of the particles on carbon film surface and surface energy of the particles.  相似文献   

9.
Synthesis of silver nanoparticles based on a polyol process and variable frequency microwave (VFM) was investigated. Comparing to a thermal method, the reaction by VFM radiation was much faster. The effects of silver nitrate concentration, poly(N-vinylpyrrolidone) (PVP) concentration, reaction time and reaction temperature were studied. It was found that the higher concentration of silver nitrate, longer reaction time and higher temperature increased the particle size while the higher concentration of PVP decreased the particle size.  相似文献   

10.
A set of three types of silver nanoparticles (Ag NPs) are prepared, which have the same Ag cores, but different surface chemistry. Ag cores are stabilized with mercaptoundecanoic acid (MUA) or with a polymer shell [poly(isobutylene‐alt‐maleic anhydride) (PMA)]. In order to reduce cellular uptake, the polymer‐coated Ag NPs are additionally modified with polyethylene glycol (PEG). Corrosion (oxidation) of the NPs is quantified and their colloidal stability is investigated. MUA‐coated NPs have a much lower colloidal stability than PMA‐coated NPs and are largely agglomerated. All Ag NPs corrode faster in an acidic environment and thus more Ag(I) ions are released inside endosomal/lysosomal compartments. PMA coating does not reduce leaching of Ag(I) ions compared with MUA coating. PEGylation reduces NP cellular uptake and also the toxicity. PMA‐coated NPs have reduced toxicity compared with MUA‐coated NPs. All studied Ag NPs were less toxic than free Ag(I) ions. All in all, the cytotoxicity of Ag NPs is correlated on their uptake by cells and agglomeration behavior.  相似文献   

11.
We have prepared spherical non-agglomerated silver nanoparticles by an evaporation–condensation–dilution/cooling technique. Silver was evaporated from a crucible in a tubular flow reactor. A porous tube diluter was used to quench the carrier gas at the outlet of the reactor to enhance the formation of small particles and to suppress agglomeration and other particle growth mechanisms. The number size distribution of the prepared particles was measured with a differential mobility analyser–condensation nucleus counter combination and the size and the shape of the particles were analysed with transmission electron microscope. The system was modelled using a sectional aerosol dynamics computer code to estimate the importance of different aerosol processes. In all conditions the particles obtained were non-agglomerated and spherical. The mean particle diameter varied from 4 to 10-nm depending on boundary conditions. From the modelling studies it can be concluded that the nucleation rate is the most important parameter controlling the final particle size.  相似文献   

12.
Silver nanoparticles were synthesized by chemical reduction of silver ions by sodium borohydride in the presence of poly-(N)-vinyl-2-pyrrolidone in solution of short chain alcohols. The nanoparticles are stable in 2-propanol, and the average diameter of the Ag colloid obtained in this solvent is about 6 nm. The photophysical properties of acridinium and coumarin dyes in 2-propanol are affected by the presence of silver nanoparticles. The interaction of silver nanoparticles with acridinium derivative leads to a spectral change of its intramolecular charge transfer (ICT) absorption band. The dye emission increases suddenly with the initial addition of the Ag metal nanoparticles, but at a high concentration of the colloid, static fluorescence quenching occurs with a progressive decrease of the fluorescence efficiency. Amino coumarin fluorescence is only quenched by the silver nanoparticles in solution.  相似文献   

13.
Use of nanotechnology in biological systems by the synthesis of metallic nanoparticles is a burning area of research in recent times. In the present investigation, aqueous extract of Andrographis paniculata was used to produce silver nanoparticles by reduction of silver nitrate. It was noted that the synthesizing process was quite rapid and silver nanoparticles form within minutes of silver ions coming in contact with plant extract. UV-Vis spectrum of the aqueous medium containing silver ions indicated a peak at 432 nm corresponding to the plasmon absorbance of the silver nanoparticles. Fourier transform infrared spectroscopic analysis of the silver nanoparticles showed the presence of proteins that might be acting as capping agents around the nanoparticles. From scanning electron microscopy analysis, the size of the silver nanoparticles was measured and it was found that the average size was between 40 and 60 nm. Furthermore, the antibacterial activity of synthesized silver nanoparticles exhibited effective inhibition zones against seven bacterial strains tested. Among the bacteria tested Pseudomonas aeruginosa was found to be most susceptible to the silver nanoparticles. Phytochemical screening of the plant extract indicated the presence of alkaloids, flavonoids, amino acids, saponins, tannins, and terpenoids.  相似文献   

14.
In this work, silver nanoparticles are synthesized using a simple and sensitive method by using double-stranded DNA (dsDNA-Ag NPs) as a template. The prepared dsDNA-Ag NPs are characterized by fluorescence spectroscopy analysis, X-ray photoelectron spectroscopy analysis, and transmission electron microscopy analysis. The excitation wavelength of the prepared silver nanoparticles is 295 nm, the emission wavelength is 377 nm, the average particle size is 11.2 nm, and the dispersion is uniform with pleasurable stability. The nanomaterials are used as fluorescent probes to detect glutathione (GSH). After adding glutathione to the dsDNA-Ag NPs fluorescent probes, the fluorescence of dsDNA-Ag NPs is burst due to electron transfer and S Ag bond generation, and the linear range of detection concentration is 0–90 mm with a detection limit of 0.37 mm .  相似文献   

15.
The key findings in the synthesis and transformation of silver nanoparticles with pentagonal symmetries arising from regular multiple twinning are reported, researched in the last 5 years. In a one‐stage photochemical synthesis of silver decahedral (pentagonal bipyramid, J13 solid) nanoparticles (AgDeNPs), oxidative etching by hydrogen peroxide is implemented to achieve complete conversion of the small silver platelet precursor NPs. The concentration of hydrogen peroxide is found to be optimal at 0.2 m . Such high peroxide concentration can be rationalized by its slow reactivity in a red‐ox equilibrium with borohydride and citrate. We have also adapted light‐emitting diodes (LEDs) as a light source and documented optimal exposure time, LED power, and wavelength range for convenient laboratory synthesis of high‐purity size‐selected AgDeNPs. In the absence of platelet impurities, AgDeNPs produce by the new‐generation procedure can be conveniently re‐grown into larger sizes using silver ions as a precursor. Thermal regrowth of new‐generation AgDeNPs into pentagonal silver nanorods (AgPRNPs, J15 solid) can be reliably accomplished with the precise variation in rod length (by varying amounts of added silver) and width (by using different seed AgDeNPs). With the reported reproducible synthetic protocols that can be readily implemented in any chemistry laboratory, AgDeNPs and AgPRNPs should serve as a versatile plasmonic platform with a precisely tunable surface plasmon resonance (SPR) from ca. 430 nm (rounded AgDeNPs) to 1100+ nm (longitudinal SPR of longer AgPRNPs). The plasmonic platform based on the reported AgNPs with pentagonal symmetries should be practical for a diverse range of applications, especially plasmonic sensing and surface‐enhanced Raman spectroscopy.  相似文献   

16.
利用化学方法合成纳米银,调节pH值,加入赖氨酸溶液,通过紫外光谱和动态光散射法研究pH对纳米银及纳米银-赖氨酸体系稳定性的影响,利用表面增强拉曼光谱考察赖氨酸与纳米银的相互作用方式。紫外光谱显示纳米银和纳米银-赖氨酸体系在pH值为5~10时,均具有较强的吸收峰;应用动态光散射测定了不同pH的纳米银及其赖氨酸体系的粒径及强度自相关函数,在pH值为5~10时,粒径分布均匀,DLS自相关曲线平滑,说明纳米银和纳米银-赖氨酸体系稳定性良好;SERS研究了pH为4、7、10时,赖氨酸在银粒子表面的吸附作用,体系出现比较明显的赖氨酸特征峰,当pH为4时,为δ(NH3+)的1444cm~(-1)谱峰和δ(COO-)的1576cm~(-1),此时赖氨酸通过氨根和羧酸根共同与银纳米粒子发生相互作用,当pH为10时,NH_3~+发生去质子化,此时赖氨酸只出现COO-的伸缩振动在1576cm~(-1)处,说明此条件下赖氨酸以羧酸根吸附在银粒子表面。  相似文献   

17.
金银纳米粒子的电化学性质及联苯胺的SERS研究   总被引:4,自引:0,他引:4  
采用柠檬酸钠还原氯金酸,硼氢化钠还原硝酸银分别制备了较小粒径的金、银纳米粒子。运用紫外可见吸收光谱(UV-Vis)、扫描电子显微镜(SEM)、循环伏安法(CV)对金、银纳米粒子进行了表征。结果表明:所得金、银纳米粒子粒径分别约为16和10 nm,并能以亚单层形式组装于导电玻璃(ITO)表面;CV图显示金、银纳米粒子分别有一对不对称的氧化还原峰,而且纳米粒子的浓度对其氧化还原电位存在一定的影响。采用自组装方法,以联苯胺为偶联分子, 在粗糙金基底表面构筑了金/银纳米粒子的双层有序结构。表面增强拉曼光谱研究表明, 在有序金银纳米粒子组装体中偶联分子的拉曼散射得到了增强。  相似文献   

18.
19.
20.
纳米银与表面吸附荧光素的荧光性能的影响   总被引:2,自引:0,他引:2  
研究了纳米银粒子对表面吸附荧光素(fluorescein,Fl)的荧光性能的影响。Fl溶液中加入纳米银粒子,Fl分子包覆在纳米银粒子表面形成Fln-Ag复合物使纳米银相互桥连形成类似网络的结构,且Fl分子吸收峰随着纳米银浓度的增加发生红移。纳米银通过产生的强局域场将能量传输给Fl发光中心,实现了Fl的荧光增强,荧光增强效率随着纳米银浓度的增加具有最大值。较大粒径的纳米银使Fl获得最大荧光增强效率所需浓度较低且最大荧光增强效率值较高。研究结果表明,纳米银与Fl间的能量传输主要由Fl分子附近局域电磁场增强和分子到金属表面无辐射跃迁能量转移过程所决定并与纳米银的浓度、尺寸密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号