首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel kind of transferrin imprinted polymer particles was synthesized by a hierarchical strategy. First, transferrin was immobilized on silica beads by non-covalent absorption. Then, a pre-polymerization mixture, composed of 1,4-bis(acryloyl)piperazine, methacrylamide, methacrylic acid, ammonium sulfate and polyoxyethylene sorbitan monolaurate, was irrigated into the pores of silica particles, and polymerized at 25 °C. Finally, the silica matrix was etched with ammonium hydrogen fluoride, not only to remove the template protein, but also to expose protein recognition sites on the surface of the imprinted polymer. The binding capacity of the transferrin-imprinted particles is 6.3 mg of protein per gram of material, and the time required to reach adsorption equilibrium was less than 10 min. The imprinting factor of transferrin is ca. 3.3 in the presence of ribonuclease B, cytochrome c and β-lactoglobulin. The results indicate that these imprinted polymer particles can recognize transferrin with good selectivity, high binding capacity and fast mass transfer. They may be applied as an artificial antibody to remove the high abundance proteins in plasma.
Figure
A novel kind of transferrin imprinted polymer particles was synthesized by a hierarchical strategy. Transferrin was immobilized on silica beads by non-covalent absorption. The pre-polymerization mixture was irrigated into the pores of silica particles and polymerized at 25°C. After the removal of the silica matrix and template protein, protein recognition sites were exposed on the surface of the prepared polymer and applied for the transferrin recognition  相似文献   

2.

A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.

A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity

  相似文献   

3.

We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L−1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.

Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting &; etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.

  相似文献   

4.
Zhong  Xianwen  Deng  Fang  Wang  Yuehua  Luo  Xubiao 《Mikrochimica acta》2013,180(15):1453-1460

We describe a molecularly imprinted polymer (MIP) for the solid-phase extraction of the skin protectant allantoin. The MIP was deposited on the surface of monodisperse silica microspheres possessing acroyl groups on the surface (MH-SiO2). The resulting MIP microspheres (MH-SiO2@MIP) showed a 3.4-fold higher adsorption capacity and a 1.9-fold better selectivity for allantoin than the respective non-imprinted polymer (MH-SiO2@NIP). The monolayer adsorption capacities of the MH-SiO2@MIP and the MH-SiO2@NIP were calculated with the help of the Langmuir model and found to be 6.8 and 1.9 mg•g−1, respectively. Adsorption kinetics fit a pseudo-second order rate mechanism, with an initial adsorption rate of 1.44 for the MH-SiO2@MIP, and of 0.07 mg•g−1•min−1 for the MH-SiO2@NIP. The material can be regenerated, and its adsorption capacity for allantoin remains stable for at least five regeneration cycles. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.

A molecularly imprinted polymer for the selective separation of allantoin was developed. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.

  相似文献   

5.

An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL−1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil.

An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.

  相似文献   

6.

The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10−8 to 10−4 mol L−1, and the detection limit is 5.10−8 mol L−1.

This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.

  相似文献   

7.
Tan  Lei  Chen  Kuncai  Huang  Cong  Peng  Rongfei  Luo  Xiaoyan  Yang  Rong  Cheng  Yanfang  Tang  Youwen 《Mikrochimica acta》2015,182(15):2615-2622

This article describes a fluorescent molecularly imprinted polymer (MIP) capable of selective fluorescent turn-on recognition of the tumor biomarker α-fetoprotein. The technique is making use of amino-modified Mn-doped ZnS quantum dots (QDs) as solid supports, 4-vinylphenylboronic acid and methyl methacrylate as the functional monomers, γ-methacryloxypropyl trimethoxysilane as the grafting agent, and α-fetoprotein as a template. A graft imprint is created on the surface of the QDs. The functional monomers are shown to play an important role in the formation of the binding sites and in preventing nonspecific protein binding. The resulting MIP-QDs display a good linear response to α-fetoprotein in the 50 ng · L−1 to 10 μg · L−1 concentration range, and the limit of detection is 48 ng · L−1. In our perception, the method has a wide scope in that it may be adapted to various other glycoproteins.

Schematic illustration of the synthesis of the MIP-QDs composites

  相似文献   

8.
Li  Lu  Fan  Limei  Dai  Yunlong  Kan  Xianwen 《Mikrochimica acta》2015,182(15):2477-2483

A molecularly imprinted polymer (MIP) was prepared by self-polymerization of dopamine in the presence of bovine hemoglobin (BHb) and then deposited on the surface of an electrode modified with gold nanoparticles (AuNPs). Scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry were employed to characterize the modified electrode using the hexacyanoferrate redox system as an electroactive probe. The effects of BHb concentration, dopamine concentration, and polymerization time were optimized. Under optimized conditions, the modified electrode selectively recognizes BHb even in the presence of other proteins. The peak current for hexacyanoferrate, typically measured at + 0.17 V (vs. SCE), depends on the concentration of BHb in the 1.0 × 10−11 to 1.0 × 10−2 mg mL−1 range. Due to the ease of preparation and tight adherence of polydopamine to various support materials, the present strategy conceivably also provides a platform for the recognition and detection of other proteins.

Gold nanoparticles and molecularly imprinted self-polymerization dopamine were modified on gold electrode surface to recognize and determine bovine hemoglobin. Under the optimized conditions, the modified electrode showed specific adsorption, selective recognition, and sensitive detection of bovine hemoglobin.

  相似文献   

9.

We have prepared a surface imprinted polymer (SIP) film for label-free recognition of immunoglobulin G (IgG). The IgG-SIPs were obtained by covalent immobilization of IgG via a cleavable covalent bond and a suitable spacer unit to a gold electrode, followed by electrodepostion of a nm-thin film of polydopamine (PDA). The IgG was then removed by destruction of the cleavable bond so that complementary binding sites were created on the surface of the film. IgG-SIPs with various thicknesses of the PDA films were compared with respect to their affinity to IgG using a quartz crystal microbalance combined with flow injection analysis. The films were also characterized by cyclic voltammetry and scanning electron microscopy. The IgG-SIPs with a film thickness of around 17 nm showed the most pronounced imprinting effect (IF 1.66) and a binding constant of 296 nM.

A strategy for preparation of the IgG-Surface Imprinted Polymeric (IgG-SIP) thin films was developed. IgG was covalently immobilized via a cleavable cross-linker to a gold electrode surface followed by electrochemical deposition of a nanometer thin PDA film. After cleaving S-S bond in the linker the IgG was removed leaving behind the complementary binding sites confined in the surface of the polymer film. The prepared IgG-SIPs were applied for IgG recognition.

  相似文献   

10.
Lee  Mei-Hwa  Thomas  James L.  Chen  Yun-Chao  Chin  Wei-Ti  Lin  Hung-Yin 《Mikrochimica acta》2013,180(15):1393-1399

The replacement of antibodies by molecularly imprinted polymers (MIPs) has been investigated for many decades. However, indirect protocols (including natural primary and secondary antibodies) are still utilized to evaluate the ability of MIP thin films to recognize target molecules. MIPs can be prepared as either a thin film or as particles, and cavities that are complementary to the template can be generated on their surfaces. We have prepared thin film MIPs and particle MIPs prepared by solvent evaporation and phase inversion, respectively, from solutions of poly(ethylene-co-vinyl alcohol) (pEVAL) in the presence of the target analytes amylase, lysozyme, and lipase. These were first adsorbed on MIP thin films and by MIP particles that contain fluorescent quantum dots. Sandwich fluoroimmunoassays were then conducted to quantify them in MIP-coated 96-well microplates. The method was applied to determine amylase in saliva, and results were compared with a commercial analytical system.

  相似文献   

11.
Inoue  Naoko  Ooya  Tooru  Toshifumi  Takeuchi 《Mikrochimica acta》2013,180(15):1387-1392

We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.

  相似文献   

12.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were prepared from magnetite (Fe3O4) as the magnetic component, paracetamol as the template, methacrylic acid as a functional monomer, and 2-(methacrylamido) ethyl methacrylate as a cross-linker. The m-MIPs were then characterized by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction and vibrating sample magnetometry. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples. Following its elution from the column loaded with the m-MIPs with an acetonitrile-buffer (9:1) mixture, it was submitted to HPLC analysis. Paracetamol can be quantified by this method in the 1 μg L−1 to 300 μg L−1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.17 and 0.4 μg L−1. The preconcentration factor of the m-MIPs is 40. The HPLC method shows good precision (4.5 % at 50 μg L−1 levels) and recoveries (between 83 and 91 %) from spiked plasma samples.

We are presenting magnetic molecularly imprinted polymer nanoparticles (m-MIPs) for solid-phase extraction and sample clean-up of paracetamol. The m-MIPs were applied to the extraction of paracetamol from human blood plasma samples

  相似文献   

13.
Saleh  Sayed M.  Ali  Reham  Wolfbeis  Otto S. 《Mikrochimica acta》2011,174(3-4):429-434

We are presenting new fluorescent nanoparticles (NPs) made from silica or polystyrene. Such NPs are potentially useful for purposes of cellular imaging and sensing. The NPs were surface-modified with amino groups, and longwave absorbing and emitting dyes were then conjugated, via their reactive chloro atoms, to the NPs. The reactions proceed at temperatures of around 65 °C and in predominantly aqueous solution, and are accompanied by a color change from typically green to blue. By analogy to other labels giving this effect, we refer to such dyes as chameleon labels. All NPs were characterized in terms of size, by absorption and emission spectroscopy, thermogravimetry and zeta potentials. The chameleon effect also was used to detect the presence of minute quantities of amino groups on the surface of NPs, both by absorptiometry and, with particular sensitivity, by fluorescence.

Nanoparticles made from silica, polystyrene or lanthanide-doped NaYF4 are presented that have been labeled with a new class of longwave dyes that undergo a color change on reacting with surface amino groups (the so-called chameleon effect). This effect can also be used to detect the presence of amino groups on such particles.

  相似文献   

14.
Dewi  Melissa R.  Laufersky  Geoffry  Nann  Thomas 《Mikrochimica acta》2015,182(13):2293-2298

Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.

Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.

  相似文献   

15.
Selyanchyn  Roman  Lee  Seung-Woo 《Mikrochimica acta》2013,180(15):1443-1452

We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.

Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties

  相似文献   

16.
Chu  Chengchao  Li  Long  Li  Shuai  Li  Meng  Ge  Shenguang  Yu  Jinghua  Yan  Mei  Song  Xianrang 《Mikrochimica acta》2013,180(15):1509-1516

We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL−1 concentration range, with a detection limit of 3 pg·mL−1.

Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell

  相似文献   

17.
Mu  Juanjuan  Feng  Qingyue  Chen  Xiudan  Li  Jing  Wang  Huili  Li  Mei-Jin 《Mikrochimica acta》2015,182(15):2561-2566

We describe a nanosensor for sensitive and selective detection of cyanide anions. The Ir(III) chlorine bridge complex [Ir(C^N)2-m-Cl]2 (Irpq, where pq is C^N = 2-phenyl quinoline) was doped into silica nanoparticles (SiNPs) with a typical size of about 30 nm. The intensity of the yellow emission of the doped SiNPs (under 410 nm exCitation) was strongly enhanced on addition of cyanide ions due to the replacement of chloride by cyanide. The method can detect cyanide ions in the 12.5 to 113 μM concentration range, and the limit of detection is 1.66 μM (at an S/N ratio of 3). The method is simple, sensitive and fast, and this makes it a candidate probe for the fast optical determination of cyanide.

The nanosensor is exploiting the cyanide-induced enhancement of the fluorescence of silica nanoparticles doped with an Ir(III) complex which is the result of the replacement of chloride by cyanide.

  相似文献   

18.
Wang  Ruiling  Yuan  Yanan  Yang  Xun  Han  Yehong  Yan  Hongyuan 《Mikrochimica acta》2015,182(13):2201-2208

Microparticles were synthesized by suspension copolymerization of the synthetic ionic liquid (IL) 1-allyl-3-methyl-imidazolium bromide with ethylene glycol dimethacrylate. The particles have a regular spherical shape and an average diameter of 65 ± 24 μm. Their affinity for the fluoroquinolone antibiotics ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) is much higher than that of the blank polymer (not containing an IL), of polymers using methacrylic acid as functional monomer, of hydrophilic-lipophilic balanced sorbents, and of C18 sorbents. The microparticles were applied to the solid-phase extraction and rapid preconcentration of the fluoroquinolones from urine which then were quantified by HPLC. The calibration plot covers the 0.05 to 20 μg mL−1 concentration range, and the average recoveries at three spiking levels range from 93.6 to 103.7 %, with RSD of ≤5.7 %. The method was successfully applied to the determination of fluoroquinolones in spiked urine.

Microparticles covalently functionalized with an ionic liquid ([Amim][Br]) were synthesized by suspension copolymerization and show higher affinity for fluoroquinolones than other sorbents. The microparticles were used as a sorbent for solid-phase extraction and preconcentration of three fluoroquinolones from urine.

  相似文献   

19.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

20.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号