首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mesoporous silica materials had a high loading efficiency of sirolimus-SMEDDS. The length of the mesopores played a more important role than the pore diameter in drug dissolution and in vivo absorption.  相似文献   

2.
To evaluate the bioavailability of puerarin from Pueraria lobata isoflavone self-microemulsifying drug delivery systems (SMEDDS) and Yufengningxin tablets, a rapid and specific liquid chromatography--mass spectrometric method was developed and validated to determine puerarin in rabbit serum. The analyte was extracted from serum samples by precipitating the serum proteins, separated on a Diamonsil C(18) column and detected by mass spectrometry with an electrospray ionization interface. 4-Hydroxybenzaldehyde was used as the internal standard. The method has a limit of quantitation of 10 ng/mL using 200 microL serum. The intra-day relative standard deviations (RSDs) ranged from 3.7 to 6.9% and inter-day RSDs were within 6.5%. After administration of SMEDDS and tablets to rabbits, a significant difference was observed in main pharmacokinetic parameters of t(max), C(max) and AUC(0--infinity) between SMEDDS and tablets, and a 2.2-fold increase in the relative bioavailability of puerarin was observed with the SMEDDS compared with Yufengningxin tablets. It was concluded that the absorption of puerarin from Pueraria lobata isoflavone SMEDDS was enhanced.  相似文献   

3.
Plant polyphenols are a broad group of bioactive compounds characterized by different chemical and structural properties, low bioavailability, and several in vitro biological activities. Among these compounds, lignans (a non-flavonoid polyphenolic class found in plant foods for human nutrition) have been recently studied as potential modulators of the gut–brain axis. In particular, gut bacterial metabolism is able to convert dietary lignans into therapeutically relevant polyphenols (i.e., enterolignans), such as enterolactone and enterodiol. Enterolignans are characterized by various biologic activities, including tissue-specific estrogen receptor activation, together with anti-inflammatory and apoptotic effects. However, variation in enterolignans production by the gut microbiota is strictly related to both bioaccessibility and bioavailability of lignans through the entire gastrointestinal tract. Therefore, in this review, we summarized the most important dietary source of lignans, exploring the interesting interplay between gut metabolites, gut microbiota, and the so-called gut–brain axis.  相似文献   

4.
Tea polyphenols (TPs) are the general compounds of natural polyhydroxyphenols extracted in tea. Although a large number of studies have shown that TPs have obvious neuroprotective and neuro repair effects, they are limited due to the low bioavailability in vivo. However, TPs can act indirectly on the central nervous system by affecting the “microflora–gut–brain axis”, in which the microbiota and its composition represent a factor that determines brain health. Bidirectional communication between the intestinal microflora and the brain (microbe–gut–brain axis) occurs through a variety of pathways, including the vagus nerve, immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and behavior, which is usually associated with neuropsychiatric disorders. In this review, we discuss that TPs and their metabolites may provide benefits by restoring the imbalance of intestinal microbiota and that TPs are metabolized by intestinal flora, to provide a new idea for TPs to play a neuroprotective role by regulating intestinal flora.  相似文献   

5.
As antimicrobial resistance has been increasing, new antimicrobial agents are desperately needed. Azalomycin F, a natural polyhydroxy macrolide, presents remarkable antimicrobial activities. To investigate its pharmacokinetic characteristics in rats, the concentrations of azalomycin F contained in biological samples, in vitro, were determined using a validated high-performance liquid chromatography–ultraviolet (HPLC-UV) method, and, in vivo, samples were assayed by an ultra-high performance liquid chromatography–tandem mass spectrometric (UPLC–MS/MS) method. Based on these methods, the pharmacokinetics of azalomycin F were first investigated. Its plasma concentration-time courses and pharmacokinetic parameters in rats were obtained by a non-compartment model for oral (26.4 mg/kg) and intravenous (2.2 mg/kg) administrations. The results indicate that the oral absolute bioavailability of azalomycin F is very low (2.39 ± 1.28%). From combinational analyses of these pharmacokinetic parameters, and of the results of the in-vitro absorption and metabolism experiments, we conclude that azalomycin F is absorbed relatively slowly and with difficulty by the intestinal tract, and subsequently can be rapidly distributed into the tissues and/or intracellular f of rats. Azalomycin F is stable in plasma, whole blood, and the liver, and presents plasma protein binding ratios of more than 90%. Moreover, one of the major elimination routes of azalomycin F is its excretion through bile and feces. Together, the above indicate that azalomycin F is suitable for administration by intravenous injection when used for systemic diseases, while, by oral administration, it can be used in the treatment of diseases of the gastrointestinal tract.  相似文献   

6.
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut–brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut–brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut–brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut–brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.Subject terms: Obesity, Type 2 diabetes, Obesity  相似文献   

7.
《Tetrahedron: Asymmetry》2006,17(8):1253-1257
A diastereoselective synthesis of 3,5-disubstituted indolizidines based on an intermolecular addition of an allylsilane on an acyliminium ion derived from (S)-pyroglutamic acid is described. The synthetic potential of this methodology is demonstrated by the enantioselective synthesis of (−)-indolizidine 195B, (−)-indolizidine 223AB, (+)-monomorine and (−)-3-butyl-5-propyl indolizidine.  相似文献   

8.
9.
Although tetrabromobisphenol A (TBBPA) has been well proven to disturb TH signaling in both in vitro and in vivo assays, it is still unclear whether TBBPA can affect brain development due to TH signaling disruption. Here, we employed the T3-induced Xenopus metamorphosis assay (TIXMA) and the spontaneous metamorphosis assay to address this issue. In the TIXMA, 5–500 nmol/L TBBPA affected T3-induced TH-response gene expression and T3-induced brain development (brain morphological changes, cell proliferation, and neurodifferentiation) at premetamorphic stages in a complicated biphasic concentration-response manner. Notably, 500 nmol/L TBBPA treatment alone exerted a stimulatory effect on tadpole growth and brain development at these stages, in parallel with a lack of TH signaling activation, suggesting the involvement of other signaling pathways. As expected, at the metamorphic climax, we observed inhibitory effects of 50–500 nmol/L TBBPA on metamorphic development and brain development, which was in agreement with the antagonistic effects of higher concentrations on T3-induced brain development at premetamorphic stages. Taken together, all results demonstrate that TBBPA can disturb TH signaling and subsequently interfere with TH-dependent brain development in Xenopus; meanwhile, other signaling pathways besides TH signaling could be involved in this process. Our study improves the understanding of the effects of TBBPA on vertebrate brain development.  相似文献   

10.
Glutathione (GSH) is a powerful antioxidant, but its application is limited due to poor storage stability and low bioavailability. A novel nutrient encapsulation and delivery system, consisting of polymerized whey protein concentrate and GSH, was prepared and in vivo bioavailability, antioxidant capacity and toxicity were evaluated. Polymerized whey protein concentrate encapsulated GSH (PWPC-GSH) showed a diameter of roughly 1115 ± 7.07 nm (D50) and zeta potential of 30.37 ± 0.75 mV. Differential scanning calorimetry (DSC) confirmed that GSH was successfully dispersed in PWPC particles. In vivo pharmacokinetics study suggested that PWPC-GSH displayed 2.5-times and 2.6-fold enhancement in maximum concentration (Cmax) and area under the concentration–time curve (AUC) as compared to free GSH. Additionally, compared with plasma of mice gavage with free GSH, significantly increased antioxidant capacity of plasma in mice with PWPC-GSH was observed (p < 0.05). Sub-chronic toxicity evaluation indicated that no adverse toxicological reactions related to oral administration of PWPC-GSH were observed on male and female rats with a diet containing PWPC-GSH up to 4% (w/w). Data indicated that PWPC may be an effective carrier for GSH to improve bioavailability and antioxidant capacity.  相似文献   

11.
Drug combinations have been the hotspot of the pharmaceutical industry, but the promising applications are limited by the unmet solubility and low bioavailability. In this work, novel cocrystals, consisting of two antithrombotic drugs with poor solubility and low bioavailability in vivo, namely, apixaban (Apx) and quercetin (Que), were developed to discover a potential method to improve the poor solubility and internal absorption of the drug combination. Compared with Apx, the dissolution behavior of Apx–Que (1:1) and Apx–Que–2ACN (1:1:2) was enhanced significantly, while the physical mixture of the chemicals failed to exhibit the advantages. The dissolution improvements of Apx–Que–2ACN could be explained by the fact that the solid dispersion-like structure and column-shaped cage of Que accelerated the access of the solvent to the inner layer of Apx. The fracture of the hydrogen bonds of Apx, which was the joint of the adjacent Que chains, facilitated the break-up of the structures. Besides, the bioavailability of Apx–Que was increased compared with the physical mixture and Apx, and Apx–Que remained stable in high temperature and illumination conditions. Therefore, a drug–drug cocrystal of two antithrombotic agents with poor solubility was developed, which exhibited greatly improved solubility, bioavailability and superior stability, indicating a novel method to overcome the shortages of drug combination.  相似文献   

12.
This study aimed to investigate the Pseudostellaria heterophylla polysaccharides (PF40) physicochemical and antidiabetic characteristics. The ultraviolet–visible (UV) spectra, Fourier transform infrared radiation (FT-IR) spectra, nuclear magnetic resonance (NMR) spectra, zeta potential, surface characteristics, and conformational and thermal stability properties of PF40 were characterized. X-ray diffraction (XRD) and scanning electron microscopy (SEM), combined with Congo red test, revealed that PF40 powder has mainly existed in amorphous form with triple-helix conformation. The single-molecular structure of PF40 exhibited a multi-branched structure extending from the center to the periphery by scanning probe microscopy (SPM) scanning. The monosaccharide residue of PF40 was an α-pyranoid ring and exhibits good stability below 168 °C. Experimental studies on antidiabetic characteristics found that PF40 could significantly improve STZ-induced intestinal mucosal damage and reduce the apoptosis of villus epithelial cells. PF40 combined with metformin could significantly improve the symptoms of insulin resistance in type 2 diabetes mellitus (T2DM) rats, the molecular mechanism might be through inhibiting the expression of RORγ protein and increasing Foxp3 protein in the jejunum of T2DM rats, and then restoring the STZ-induced imbalance of T helper 17(Th17)/ regulatory T cells (Treg) cells, thereby maintaining intestinal immune homeostasis. Results identified in this study provided important information regarding the structure and antidiabetic characteristics of Pseudostellaria heterophylla polysaccharides, which can contribute to the development of Pseudostellaria heterophylla polysaccharides for industrial purposes in the future.  相似文献   

13.
Hot-melt extrusion (HME) has great advantages for the preparation of solid dispersion (SD), for instance, it does not require any organic solvents. Nevertheless, its application to high-melting-point and thermosensitive drugs has been rarely reported. In this study, thermally unstable curcumin (Cur) was used as a drug model. The HME process was systematically studied by adjusting the gradient temperature mode and residence time, with the content, crystallinity and dissolution of Cur as the investigated factors. The effects of barrel temperature, screw speed and cooling rate on HME were also examined. Solubility parameters and the Flory–Huggins method were used to evaluate the miscibility between Cur and carriers. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, equilibrium solubility and in vitro and in vivo experiments were used to characterize and evaluate the results. An amorphous Cur SD was successfully obtained, increasing the solubility and release of Cur. In the optimal process, the mass ratio of Cur to Eudragit® E PO (EPO) was 1:4 and the barrel temperature was set at a gradient heating mode (130 °C–135 °C–140 °C–145 °C–150 °C–155 °C–160 °C) at 100 rpm. Related pharmacokinetic test results also showed the improved bioavailability of the drug in rats. In a pharmacodynamic analysis of Sprague–Dawley rats, the Cmax and the bioavailability of the Cur-EPO SD were 2.6 and 1.5 times higher than those of Cur, respectively. The preparation of the amorphous SD not only provided more solubility but also improved the bioavailability of Cur, which provides an effective way to improve the bioavailability of BCS II drugs.  相似文献   

14.
The detailed metabolite profiling of Laguncularia racemosa was accomplished by high-performance countercurrent chromatography (HPCCC) using the three-phase system n-hexane–tert-butyl methyl ether–acetonitrile–water 2:3:3:2 (v/v/v/v) in step-gradient elution mode. The gradient elution was adjusted to the chemical complexity of the L. racemosa ethyl acetate partition and strongly improved the polarity range of chromatography. The three-phase solvent system was chosen for the gradient to avoid equilibrium problems when changing mobile phase compositions encountered between the gradient steps. The tentative recognition of metabolites including the identification of novel ones was possible due to the off-line injection of fractions to electrospray ionization mass spectrometry (ESI-MS/MS) in the sequence of recovery. The off-line hyphenation profiling experiment of HPCCC and ESI-MS projected the preparative elution by selected single ion traces in the negative ionization mode. Co-elution effects were monitored and MS/MS fragmentation data of more than 100 substances were used for structural characterization and identification. The metabolite profile in the L. racemosa extract comprised flavonoids, hydrolysable tannins, condensed tannins and low molecular weight polyphenols.  相似文献   

15.
This study investigated the transdermal delivery of indomethacin (model drug) from self-microemulsifying system, microemulsions and their phase transition systems. The study selected five formulations with fixed surfactant–oil ratio and increasing water content. These included a water free self-microemulsifying drug delivery system (SMEDDS), microemulsions containing water at 5% (w/w) (ME 5%) or at 10% (w/w) (ME 10%), a liquid crystalline formulation containing water at 30% (w/w) (LC) and coarse emulsion containing water at 80% (w/w) (EM). To clarify the results the study evaluated a microemulsion containing 10% (w/w) of receptor fluid (30%, v/v ethanol in phosphate buffered saline, PBS) (MEEB 10%) and a supersaturated system of ME 10% (MESS 10%). The viscosity increased with increasing water content up to certain limit above which the viscosity started to reduce. These formulations increased the transdermal drug flux compared to saturated drug solution in PBS (control) with formulation being ranked as SMEDDS > MEEB 10%  ME 10%  ME 5% > LC > EM > control. SMEDDS produced the longest lag time. The MESS 10% produced a flux value similar to that of SMEDDS but with shorter lag time suggesting transformation of SMEDDS into microemulsion after topical application with possible supersaturation. These systems can provide the formula with high flexibility in selecting the optimum viscosity as the tested preparations were able to enhance transdermal delivery in the range between SMEDDS, ME and the LC preparations with some enhancing ability for the EM.  相似文献   

16.
A concise synthesis of the (−)-indolizidine alkaloid 167B and two formal syntheses of (−)-indolizidine 209D and (−)-coniceine are described in just three steps from an α,β-unsaturated diazoketone, via an unusual photochemical Wolff rearrangement. Preparation of the unsaturated diazoketone is straightforward from N-Cbz-prolinal and a 3-diazo-2-oxopropylphosphonate, employing a Horner-Wadsworth-Emmons reaction. The strategy should be feasible and easily adaptable to the synthesis of other indolizidine alkaloids and analogues.  相似文献   

17.
The human microbiome has been recently associated with human health and disease. Brain tumors (BTs) are a particularly difficult condition to directly link to the microbiome, as microorganisms cannot generally cross the blood–brain barrier (BBB). However, some nanosized extracellular vesicles (EVs) released from microorganisms can cross the BBB and enter the brain. Therefore, we conducted metagenomic analysis of microbial EVs in both serum (152 BT patients and 198 healthy controls (HC)) and brain tissue (5 BT patients and 5 HC) samples based on the V3–V4 regions of 16S rDNA. We then developed diagnostic models through logistic regression and machine learning algorithms using serum EV metagenomic data to assess the ability of various dietary supplements to reduce BT risk in vivo. Models incorporating the stepwise method and the linear discriminant analysis effect size (LEfSe) method yielded 12 and 29 significant genera as potential biomarkers, respectively. Models using the selected biomarkers yielded areas under the curves (AUCs) >0.93, and the model using machine learning resulted in an AUC of 0.99. In addition, Dialister and [Eubacterium] rectale were significantly lower in both blood and tissue samples of BT patients than in those of HCs. In vivo tests showed that BT risk was decreased through the addition of sorghum, brown rice oil, and garlic but conversely increased by the addition of bellflower and pear. In conclusion, serum EV metagenomics shows promise as a rich data source for highly accurate detection of BT risk, and several foods have potential for mitigating BT risk.Subject terms: Diagnostic markers, Machine learning  相似文献   

18.
A system for dynamic continuous-flow dialysis during intestinal digestion for an in vitro simulation of gastrointestinal digestion is presented as an alternative to human and animal in vivo methods for estimation of the bioavailability of minerals. The method is based on the in vitro batch dialysis method described by Miller, which was developed into a continuous-flow system of a simple design to perform dynamic dialysis in the intestinal digestion stage. A flow dialysis system has the advantages of simulation being close to in vivo physiological conditions because pH change during dialysis is gradual and dialyzed components are continuously removed. The proposed new design performed dialysis during a continuous flow of dialyzing solution (NaHCO3) around a dialysis bag containing peptic digest, which is placed inside a glass dialysis chamber. Gradual change of dialysis pH, similar to that occurring in the gastrointestinal tract, was obtained by optimization of flow rate and concentration of NaHCO3. The dialysate collected in fractions was analyzed to determine dialyzed minerals and pH change in the course of dialysis. The method was tested by determination of calcium bioavailability of powder milk and calcium carbonate tablets.  相似文献   

19.
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer’s disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood–brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood–brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.  相似文献   

20.
Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure–activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号